|
29374 |
codeforces#P1001I
Deutsch-Jozsa algorithm
|
0 / 0 |
5 |
|
29375 |
codeforces#P1002A1
Generate superposition of all basis states
|
1 / 1 |
3 |
|
29376 |
codeforces#P1002A2
Generate superposition of zero state and a basis state
|
0 / 0 |
4 |
|
29377 |
codeforces#P1002A3
Generate superposition of two basis states
|
0 / 0 |
5 |
|
29378 |
codeforces#P1002A4
Generate W state
|
0 / 0 |
6 |
|
29379 |
codeforces#P1002B1
Distinguish zero state and W state
|
0 / 0 |
4 |
|
29380 |
codeforces#P1002B2
Distinguish GHZ state and W state
|
0 / 0 |
5 |
|
29381 |
codeforces#P1002B3
Distinguish four 2-qubit states
|
0 / 0 |
5 |
|
29382 |
codeforces#P1002B4
Distinguish four 2-qubit states - 2
|
0 / 0 |
5 |
|
29383 |
codeforces#P1002C1
Distinguish zero state and plus state with minimum error
|
0 / 0 |
5 |
|
29384 |
codeforces#P1002C2
Distinguish zero state and plus state without errors
|
0 / 0 |
6 |
|
29385 |
codeforces#P1002D1
Oracle for f(x) = b * x mod 2
|
0 / 0 |
4 |
|
29386 |
codeforces#P1002D2
Oracle for f(x) = b * x + (1 - b) * (1 - x) mod 2
|
0 / 0 |
4 |
|
29387 |
codeforces#P1002D3
Oracle for majority function
|
0 / 0 |
5 |
|
29388 |
codeforces#P1002E1
Bernstein-Vazirani algorithm
|
0 / 0 |
5 |
|
29389 |
codeforces#P1002E2
Another array reconstruction algorithm
|
0 / 0 |
6 |
|
29390 |
codeforces#P1003A
Polycarp's Pockets
|
2 / 2 |
3 |
|
29391 |
codeforces#P1003B
Binary String Constructing
|
0 / 0 |
4 |
|
29392 |
codeforces#P1003C
Intense Heat
|
0 / 0 |
4 |
|
29393 |
codeforces#P1003D
Coins and Queries
|
0 / 0 |
5 |
|
29394 |
codeforces#P1003E
Tree Constructing
|
1 / 2 |
7 |
|
29395 |
codeforces#P1003F
Abbreviation
|
0 / 0 |
8 |
|
29396 |
codeforces#P1004A
Sonya and Hotels
|
0 / 1 |
3 |
|
29397 |
codeforces#P1004B
Sonya and Exhibition
|
0 / 0 |
4 |
|
29398 |
codeforces#P1004C
Sonya and Robots
|
0 / 0 |
4 |
|
29399 |
codeforces#P1004D
Sonya and Matrix
|
0 / 0 |
8 |
|
29400 |
codeforces#P1004E
Sonya and Ice Cream
|
0 / 0 |
9 |
|
29401 |
codeforces#P1004F
Sonya and Bitwise OR
|
0 / 1 |
10 |
|
29402 |
codeforces#P1005A
Tanya and Stairways
|
1 / 1 |
3 |
|
29403 |
codeforces#P1005B
Delete from the Left
|
0 / 0 |
3 |
|
29404 |
codeforces#P1005C
Summarize to the Power of Two
|
0 / 0 |
4 |
|
29405 |
codeforces#P1005D
Polycarp and Div 3
|
0 / 0 |
5 |
|
29406 |
codeforces#P1005E1
Median on Segments (Permutations Edition)
|
0 / 0 |
6 |
|
29407 |
codeforces#P1005E2
Median on Segments (General Case Edition)
|
0 / 1 |
9 |
|
29408 |
codeforces#P1005F
Berland and the Shortest Paths
|
0 / 0 |
7 |
|
29409 |
codeforces#P1006A
Adjacent Replacements
|
1 / 1 |
3 |
|
29410 |
codeforces#P1006B
Polycarp's Practice
|
0 / 0 |
4 |
|
29411 |
codeforces#P1006C
Three Parts of the Array
|
0 / 0 |
4 |
|
29412 |
codeforces#P1006D
Two Strings Swaps
|
1 / 1 |
5 |
|
29413 |
codeforces#P1006E
Military Problem
|
0 / 0 |
5 |
|
29414 |
codeforces#P1006F
Xor-Paths
|
1 / 1 |
7 |
|
29415 |
codeforces#P1007A
Reorder the Array
|
0 / 0 |
4 |
|
29416 |
codeforces#P1007B
Pave the Parallelepiped
|
0 / 0 |
9 |
|
29417 |
codeforces#P1007C
Guess two numbers
|
0 / 0 |
10 |
|
29418 |
codeforces#P1007D
Ants
|
0 / 0 |
10 |
|
29419 |
codeforces#P1007E
Mini Metro
|
0 / 0 |
10 |
|
29420 |
codeforces#P1008A
Romaji
|
0 / 0 |
3 |
|
29421 |
codeforces#P1008B
Turn the Rectangles
|
0 / 2 |
3 |
|
29422 |
codeforces#P1009A
Game Shopping
|
1 / 1 |
3 |
|
29423 |
codeforces#P1009B
Minimum Ternary String
|
0 / 0 |
4 |