loj#P3513. 「USACO 2021 US Open Platinum」Balanced Subsets

「USACO 2021 US Open Platinum」Balanced Subsets

Description

Farmer John's pasture can be regarded as a large 2D grid of square "cells" (picture a huge chessboard) labeled by the ordered pairs (i,j)(i,j) for each 1iN1\le i\le N, 1jN1\le j\le N (1N1501\le N\le 150). Some of the cells contain grass.

A nonempty subset of grid cells is called "balanced" if the following conditions hold:

  1. All cells in the subset contain grass.
  2. The subset is 4-connected. In other words, there exists a path from any cell in the subset to any other cell in the subset such that every two consecutive cells of the path are horizontally or vertically adjacent.
  3. If cells (x1,y)(x_1,y) and (x2,y)(x_2,y) (x1x2x_1\le x_2) are part of the subset, then all cells (x,y)(x,y) with x1xx2x_1\le x\le x_2 are also part of the subset.
  4. If cells (x,y1)(x,y_1) and (x,y2)(x,y_2) (y1y2y_1\le y_2) are part of the subset, then all cells (x,y)(x,y) with y1yy2y_1\le y\le y_2 are also part of the subset.

Count the number of balanced subsets modulo 109+710^9+7.

Input

The first line contains NN.

The next NN lines each contain a string of NN characters. The jj-th character of the ii-th line from the top is equal to G if the cell at (i,j)(i,j) contains grass, or . otherwise.

Output

The number of balanced subsets modulo 109+710^9+7.

2
GG
GG

13

4
GGGG
GGGG
GG.G
GGGG

642

Scoring

  • Test cases 1-4 satisfy N4N\le 4.
  • Test cases 5-10 satisfy N20N\le 20.
  • Test cases 11-20 satisfy no additional constraints.

Problem credits: Benjamin Qi