loj#P2510. 「AHOI / HNOI2018」道路

「AHOI / HNOI2018」道路

题目描述

W 国的交通呈一棵树的形状。W 国一共有 n1n − 1 个城市和 nn 个乡村,其中城市从 11n1n − 1 编号,乡村从 11nn 编号,且 11 号城市是首都。道路都是单向的,本题中我们只考虑从乡村通往首都的道路网络。对于每一个城市,恰有一条公路和一条铁路通向这座城市。对于城市 ii,通向该城市的道路(公路或铁路)的起点,要么是一个乡村,要么是一个编号比 ii 大的城市。没有道路通向任何乡村。除了首都以外,从任何城市或乡村出发只有一条道路;首都没有往 外的道路。从任何乡村出发,沿着唯一往外的道路走,总可以到达首都。

W 国的国王小 W 获得了一笔资金,他决定用这笔资金来改善交通。由于资金有限,小 W 只能翻修 n1n − 1 条道路。小 W 决定对每个城市翻修恰好一条通向它的道路,即从公路和铁路中选择一条并进行翻修。小 W 希望从乡村通向城市可以尽可能地便利,于是根据人口调查的数据,小 W 对每个乡村制定了三个参数,编号为 ii 的乡村的三个参数是 aia_ibib_icic_i。假设从编号为 ii 的乡村走到首都一共需要经过 xx 条未翻修的公路与 yy 条未翻修的铁路,那么该乡村的不便利值为

ci(ai+x)(bi+y)c_i \cdot (ai + x) \cdot (bi + y)

在给定的翻修方案下,每个乡村的不便利值相加的和为该翻修方案的不便利值。

翻修 n1n − 1 条道路有很多方案,其中不便利值最小的方案称为最优翻修方案,小 W 自然希望找到最优翻修方案,请你帮助他求出这个最优翻修方案的不便利值。

输入格式

第一行为正整数 nn。 接下来 n1n − 1 行,每行描述一个城市。其中第 ii 行包含两个数 si,tis_i, t_isis_i 表示通向第 ii 座城市的公路的起点,tit_i 表示通向第 ii 座城市的铁路的起点。如果 si>0s_i > 0,那么存在一条从第 sis_i 座城市通往第 ii 座城市的公路,否则存在一条从第 si-s_i 个乡村通往第 ii 座城市的公路;tit_i 类似地,如果 ti>0t_i > 0,那么存在一条从第 tit_i 座城市通往第 ii 座城市的铁路,否则存在一条从第 ti-t_i 个乡村通往第 ii 座城市的铁路。

接下来 nn 行,每行描述一个乡村。其中第 ii 行包含三个数 ai,bi,cia_i, b_i, c_i,其意义如题面所示。

输出格式

输出一行一个整数,表示最优翻修方案的不便利值。

6
2 3
4 5
-1 -2
-3 -4
-5 -6
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
54
9
2 -2
3 -3
4 -4
5 -5
6 -6
7 -7
8 -8
-1 -9
1 60 1
1 60 1
1 60 1
1 60 1
1 60 1
1 60 1
1 60 1
1 60 1
1 60 1
548
12
2 4
5 3
-7 10
11 9
-1 6
8 7
-6 -10
-9 -4
-12 -5
-2 -3
-8 -11
53 26 491
24 58 190
17 37 356
15 51 997
30 19 398
3 45 27
52 55 838
16 18 931
58 24 212
43 25 198
54 15 172
34 5 524
5744902

数据范围与提示

2020 组数据,编号为 1201 ∼ 20

对于编号 4\le 4 的数据,n20n \le 20

对于编号为 585 \sim 8 的数据,ai,bi,ci5n50a_i, b_i, c_i \le 5,n \le 50

对于编号为 9129 \sim 12 的数据,n2000n \le 2000

对于所有的数据,n20000n \le 200001ai,bi601 \le a_i, b_i \le 601ci1091 \le c_i \le 10^9si,tis_i, t_i[n,1](i,n1][−n, −1] \cap (i, n − 1] 内的整数,任意乡村可以通过不超过 4040 条道路到达首都。