atcoder#ABC267C. [ABC267C] Index × A(Continuous ver.)

[ABC267C] Index × A(Continuous ver.)

Score : 300300 points

Problem Statement

You are given an integer sequence A=(A1,A2,,AN)A=(A_1,A_2,\dots,A_N) of length NN.

Find the maximum value of i=1Mi×Bi\displaystyle \sum_{i=1}^{M} i \times B_i for a contiguous subarray B=(B1,B2,,BM)B=(B_1,B_2,\dots,B_M) of AA of length MM.

Notes

A contiguous subarray of a number sequence is a sequence that is obtained by removing 00 or more initial terms and 00 or more final terms from the original number sequence.

For example, (2,3)(2, 3) and (1,2,3)(1, 2, 3) are contiguous subarrays of (1,2,3,4)(1, 2, 3, 4), but (1,3)(1, 3) and (3,2,1)(3,2,1) are not contiguous subarrays of (1,2,3,4)(1, 2, 3, 4).

Constraints

  • 1MN2×1051 \le M \le N \le 2 \times 10^5
  • 2×105Ai2×105- 2 \times 10^5 \le A_i \le 2 \times 10^5
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

A1A_1 A2A_2 \dots ANA_N

Output

Print the answer.

4 2
5 4 -1 8
15

When B=(A3,A4)B=(A_3,A_4), we have $\displaystyle \sum_{i=1}^{M} i \times B_i = 1 \times (-1) + 2 \times 8 = 15$. Since it is impossible to achieve 1616 or a larger value, the solution is 1515.

Note that you are not allowed to choose, for instance, B=(A1,A4)B=(A_1,A_4).

10 4
-3 1 -4 1 -5 9 -2 6 -5 3
31