atcoder#ABC258B. [ABC258B] Number Box

[ABC258B] Number Box

Score : 200200 points

Problem Statement

You are given a positive integer NN.

We have a grid with NN rows and NN columns, where the square at the ii-th row from the top and jj-th column from the left has a digit Ai,jA_{i,j} written on it.

Assume that the upper and lower edges of this grid are connected, as well as the left and right edges. In other words, all of the following holds.

  • (N,i)(N,i) is just above (1,i)(1,i), and (1,i)(1,i) is just below (N,i)(N,i). (1iN)(1\le i\le N).
  • (i,N)(i,N) is just to the left of (i,1)(i,1), and (i,1)(i,1) is just to the right of (i,N)(i,N). (1iN)(1\le i\le N).

Takahashi will first choose one of the following eight directions: up, down, left, right, and the four diagonal directions. Then, he will start on a square of his choice and repeat moving one square in the chosen direction N1N-1 times.

In this process, Takahashi visits NN squares. Find the greatest possible value of the integer that is obtained by arranging the digits written on the squares visited by Takahashi from left to right in the order visited by him.

Constraints

  • 1N101 \le N \le 10
  • 1Ai,j91 \le A_{i,j} \le 9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

A1,1A1,2A1,NA_{1,1}A_{1,2}\dots A_{1,N}

A2,1A2,2A2,NA_{2,1}A_{2,2}\dots A_{2,N}

\vdots

AN,1AN,2AN,NA_{N,1}A_{N,2}\dots A_{N,N}

Output

Print the answer.

4
1161
1119
7111
1811
9786

If Takahashi starts on the square at the 22-nd row from the top and 44-th column from the left and goes down and to the right, the integer obtained by arranging the digits written on the visited squares will be 97869786. It is impossible to make a value greater than 97869786, so the answer is 97869786.

10
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111

Note that the answer may not fit into a 32-bit integer.