100 atcoder#ABC162F. [ABC162F] Select Half

[ABC162F] Select Half

Score : 600600 points

Problem Statement

Given is an integer sequence A1,...,ANA_1, ..., A_N of length NN.

We will choose exactly N2\left\lfloor \frac{N}{2} \right\rfloor elements from this sequence so that no two adjacent elements are chosen.

Find the maximum possible sum of the chosen elements.

Here x\lfloor x \rfloor denotes the greatest integer not greater than xx.

Constraints

  • 2N2×1052 \leq N \leq 2\times 10^5
  • Ai109|A_i|\leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

A1A_1 ...... ANA_N

Output

Print the maximum possible sum of the chosen elements.

6
1 2 3 4 5 6
12

Choosing 22, 44, and 66 makes the sum 1212, which is the maximum possible value.

5
-1000 -100 -10 0 10
0

Choosing 10-10 and 1010 makes the sum 00, which is the maximum possible value.

10
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
5000000000

Watch out for overflow.

27
18 -28 18 28 -45 90 -45 23 -53 60 28 -74 -71 35 -26 -62 49 -77 57 24 -70 -93 69 -99 59 57 -49
295