100 atcoder#ABC133C. [ABC133C] Remainder Minimization 2019

[ABC133C] Remainder Minimization 2019

Score : 300300 points

Problem Statement

You are given two non-negative integers LL and RR. We will choose two integers ii and jj such that Li<jRL \leq i < j \leq R. Find the minimum possible value of (i×j) mod 2019(i \times j) \text{ mod } 2019.

Constraints

  • All values in input are integers.
  • 0L<R2×1090 \leq L < R \leq 2 \times 10^9

Input

Input is given from Standard Input in the following format:

LL RR

Output

Print the minimum possible value of (i×j) mod 2019(i \times j) \text{ mod } 2019 when ii and jj are chosen under the given condition.

2020 2040
2

When (i,j)=(2020,2021)(i, j) = (2020, 2021), (i×j) mod 2019=2(i \times j) \text{ mod } 2019 = 2.

4 5
20

We have only one choice: (i,j)=(4,5)(i, j) = (4, 5).