100 atcoder#ABC103C. [ABC103C] Modulo Summation

[ABC103C] Modulo Summation

Score : 300300 points

Problem Statement

You are given NN positive integers a1,a2,...,aNa_1, a_2, ..., a_N.

For a non-negative integer mm, let $f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N)$.

Here, X mod YX\ mod\ Y denotes the remainder of the division of XX by YY.

Find the maximum value of ff.

Constraints

  • All values in input are integers.
  • 2N30002 \leq N \leq 3000
  • 2ai1052 \leq a_i \leq 10^5

Input

Input is given from Standard Input in the following format:

NN

a1a_1 a2a_2 ...... aNa_N

Output

Print the maximum value of ff.

3
3 4 6
10

$f(11) = (11\ mod\ 3) + (11\ mod\ 4) + (11\ mod\ 6) = 10$ is the maximum value of ff.

5
7 46 11 20 11
90
7
994 518 941 851 647 2 581
4527