3 条题解
-
1
回顾一下最短路径的算法:
- 所有顶点间的最短路径算法 --- Floyd
- 单源最短路径算法 --- Dijkstra
- 判断负权回路最短路径算法 --- Bellman-Ford
- 带负权边最短路径算法 --- SPFA
最短路径:在带权有向图中 点(源点)到 点(终点)的多条路径中,寻找一条各边权值最小的路径,即最短路径。
可以用 Dijkstra 算法解决单源最短路径问题。
基本思想:
将图中所有顶点分成两组:已知确定最短路 、尚未确定最短路 不断从第 组中选择路径长度最短的点放入第 组并扩展。
若顶点序列 是从 到 的最短路,则序列 必为从 到 的最短路。
其本质为:贪心算法,且只能用于正权图。
可以用优先队列 和邻接表来优化。
注意:本题要开 。
#include <bits/stdc++.h> using namespace std; #define int long long typedef long long ll; const int N = 5e5 + 10; int h[N], vtx[2 * N], nxt[2 * N], wt[2 * N], idx; int dis[N], pre[N], vis[N]; int n, m, s, tu, tv, tw; struct node { int u, v, w; friend bool operator < (node a, node b) { if (a.w >= b.w) { return 1; } else { return 0; } } }; priority_queue<node> q; void addEdge(int a, int b, int c) { vtx[idx] = b; nxt[idx] = h[a]; wt[idx] = c; h[a] = idx++; } void dijkstra(int s) { dis[s] = 0; node tmp; tmp.u = s; tmp.v = s; tmp.w = 0; q.push(tmp); while (!q.empty()) { tmp = q.top(); q.pop(); int nid = tmp.v; if (vis[nid] == 1) { continue; } vis[nid] = 1; int p = h[nid]; while (p != -1) { if (vis[vtx[p]] == 0) { if (dis[nid] + wt[p] < dis[vtx[p]]) { dis[vtx[p]] = dis[nid] + wt[p]; pre[vtx[p]] = nid; tmp.u = nid; tmp.v = vtx[p]; tmp.w = dis[vtx[p]]; q.push(tmp); } } p = nxt[p]; } } } signed main() { memset(h, -1, sizeof(h)); cin >> n >> m >> s; for (int i = 1; i <= n; i++) { dis[i] = 3e18; } while (m--) { cin >> tu >> tv >> tw; if (tu != tv) { addEdge(tu, tv, tw); } } dijkstra(s); for (int i = 1; i <= n; i++) { if (s == i) { cout << 0 << " "; } else { cout << dis[i] << " "; } } return 0; }
信息
- ID
- 223
- 时间
- 1000ms
- 内存
- 256MiB
- 难度
- 7
- 标签
- (无)
- 递交数
- 319
- 已通过
- 68
- 上传者