3 条题解

  • 1
    @ 2024-6-30 10:52:06

    回顾一下最短路径的算法:

    • 所有顶点间的最短路径算法 --- Floyd
    • 单源最短路径算法 --- Dijkstra
    • 判断负权回路最短路径算法 --- Bellman-Ford
    • 带负权边最短路径算法 --- SPFA

    最短路径:在带权有向图中 AA 点(源点)到 BB 点(终点)的多条路径中,寻找一条各边权值最小的路径,即最短路径

    可以用 Dijkstra 算法解决单源最短路径问题。

    基本思想

    将图中所有顶点分成两组:已知确定最短路 SS、尚未确定最短路 VSV-S不断从第 22 组中选择路径长度最短的点放入第 11 组并扩展。

    若顶点序列 V0,V1,......,Vn{V_0,V_1,......,V_n} 是从 V0V_0VnV_n 的最短路,则序列 V0,V1,......,Vn1{V_0,V_1,......,V_{n-1}} 必为从 V0V_0Vn1V_{n-1} 的最短路。

    其本质为:贪心算法,且只能用于正权图。

    可以用优先队列 priority_queuepriority\_queue 和邻接表来优化。

    注意:本题要开 long longlong\ long

    #include <bits/stdc++.h>
    using namespace std;
    
    #define int long long
    typedef long long ll;
    const int N = 5e5 + 10;
    int h[N], vtx[2 * N], nxt[2 * N], wt[2 * N], idx;
    int dis[N], pre[N], vis[N];
    int n, m, s, tu, tv, tw;
    
    struct node {
    	int u, v, w;
    	friend bool operator < (node a, node b) {
    		if (a.w >= b.w) {
    			return 1;
    		} else {
    			return 0;
    		}
    	}
    };
    priority_queue<node> q;
    
    void addEdge(int a, int b, int c) {
    	vtx[idx] = b;
    	nxt[idx] = h[a];
    	wt[idx] = c;
    	h[a] = idx++;
    }
    
    void dijkstra(int s) {
    	dis[s] = 0;
    	node tmp;
    	tmp.u = s;
    	tmp.v = s;
    	tmp.w = 0;
    	q.push(tmp);
    	while (!q.empty()) {
    		tmp = q.top();
    		q.pop();
    		int nid = tmp.v;
    		if (vis[nid] == 1) {
    			continue;
    		}
    		vis[nid] = 1;
    		int p = h[nid];
    		while (p != -1) {
    			if (vis[vtx[p]] == 0) {
    				if (dis[nid] + wt[p] < dis[vtx[p]]) {
    					dis[vtx[p]] = dis[nid] + wt[p];
    					pre[vtx[p]] = nid;
    					tmp.u = nid;
    					tmp.v = vtx[p];
    					tmp.w = dis[vtx[p]];
    					q.push(tmp);
    				}
    			}
    			p = nxt[p];
    		}
    	}
    }
    signed main() {
    	memset(h, -1, sizeof(h));
    	cin >> n >> m >> s;
    	for (int i = 1; i <= n; i++) {
    		dis[i] = 3e18;
    	}
    	while (m--) {
    		cin >> tu >> tv >> tw;
    		if (tu != tv) {
    			addEdge(tu, tv, tw);
    		}
    	}
    	dijkstra(s);
    	for (int i = 1; i <= n; i++) {
    		if (s == i) {
    			cout << 0 << " "; 
    		} else {
    			cout << dis[i] << " ";
    		}
    	}
    	return 0;
    }
    
    • 1
      @ 2023-3-25 17:28:42
      #include<bits/stdc++.h>
      #define MaxN 100010
      #define MaxM 500010
      #define ll long long
      #define inf 114514191981019260817
      using namespace std;
      struct edge
      {
          ll to, dis, next;
      };
      edge e[MaxM];
      ll head[MaxN], dis[MaxN], cnt;
      bool vis[MaxN];
      ll n, m, s;
      inline void add_edge( int u, int v, int d )
      {
          cnt++;
          e[cnt].dis = d;
          e[cnt].to = v;
          e[cnt].next = head[u];
          head[u] = cnt;
      }
      struct node
      {
          ll dis;
          ll pos;
          bool operator <( const node &x )const
          {
              return x.dis < dis;
          }
      };
      priority_queue < node > q;
      inline void dijkstra()
      {
          dis[s] = 0;
          q.push( ( node ){0, s} );
          while( !q.empty() )
          {
              node tmp = q.top();
              q.pop();
              int x = tmp.pos, d = tmp.dis;
              if( vis[x] )
                  continue;
              vis[x] = 1;
              for(ll i = head[x]; i; i = e[i].next)
              {
                  ll y = e[i].to;
                  if( dis[y] > dis[x] + e[i].dis )
                  {
                      dis[y] = dis[x] + e[i].dis;
                      if( !vis[y] )
                      {
                          q.push( ( node ){dis[y], y} );
                      }
                  }
              }
          }
      }
      int main()
      {
          scanf( "%lld%lld%lld", &n, &m, &s );
          for(int i = 1; i <= n; ++i) dis[i] = inf;
          for(ll i = 0; i < m; ++i )
          {
              ll u, v, d;
              scanf( "%lld%lld%lld", &u, &v, &d );
              add_edge( u, v, d );
          }
          dijkstra();
          for( int i = 1; i <= n; i++ )
              printf( "%lld ", dis[i] );
          return 0;
      }
      
      
      • 0
        @ 2022-1-22 22:25:08

        友情提示: 该题须开long long,且对设置的INF有较大要求,须开到极大

        #include<bits/stdc++.h>
        #define MaxN 100010
        #define MaxM 500010
        #define ll long long
        #define inf 114514191981019260817
        using namespace std;
        struct edge
        {
            ll to, dis, next;
        };
        edge e[MaxM];
        ll head[MaxN], dis[MaxN], cnt;
        bool vis[MaxN];
        ll n, m, s;
        inline void add_edge( int u, int v, int d )
        {
            cnt++;
            e[cnt].dis = d;
            e[cnt].to = v;
            e[cnt].next = head[u];
            head[u] = cnt;
        }
        struct node
        {
            ll dis;
            ll pos;
            bool operator <( const node &x )const
            {
                return x.dis < dis;
            }
        };
        priority_queue < node > q;
        inline void dijkstra()
        {
            dis[s] = 0;
            q.push( ( node ){0, s} );
            while( !q.empty() )
            {
                node tmp = q.top();
                q.pop();
                int x = tmp.pos, d = tmp.dis;
                if( vis[x] )
                    continue;
                vis[x] = 1;
                for(ll i = head[x]; i; i = e[i].next)
                {
                    ll y = e[i].to;
                    if( dis[y] > dis[x] + e[i].dis )
                    {
                        dis[y] = dis[x] + e[i].dis;
                        if( !vis[y] )
                        {
                            q.push( ( node ){dis[y], y} );
                        }
                    }
                }
            }
        }
        int main()
        {
            scanf( "%lld%lld%lld", &n, &m, &s );
            for(int i = 1; i <= n; ++i) dis[i] = inf;
            for(ll i = 0; i < m; ++i )
            {
                ll u, v, d;
                scanf( "%lld%lld%lld", &u, &v, &d );
                add_edge( u, v, d );
            }
            dijkstra();
            for( int i = 1; i <= n; i++ )
                printf( "%lld ", dis[i] );
            return 0;
        }
        
        • 1

        信息

        ID
        223
        时间
        1000ms
        内存
        256MiB
        难度
        7
        标签
        (无)
        递交数
        319
        已通过
        68
        上传者