codeforces#P1354C1. Simple Polygon Embedding
Simple Polygon Embedding
Description
The statement of this problem is the same as the statement of problem C2. The only difference is that, in problem C1, $n$ is always even, and in C2, $n$ is always odd.
You are given a regular polygon with $2 \cdot n$ vertices (it's convex and has equal sides and equal angles) and all its sides have length $1$. Let's name it as $2n$-gon.
Your task is to find the square of the minimum size such that you can embed $2n$-gon in the square. Embedding $2n$-gon in the square means that you need to place $2n$-gon in the square in such way that each point which lies inside or on a border of $2n$-gon should also lie inside or on a border of the square.
You can rotate $2n$-gon and/or the square.
The first line contains a single integer $T$ ($1 \le T \le 200$) — the number of test cases.
Next $T$ lines contain descriptions of test cases — one per line. Each line contains single even integer $n$ ($2 \le n \le 200$). Don't forget you need to embed $2n$-gon, not an $n$-gon.
Print $T$ real numbers — one per test case. For each test case, print the minimum length of a side of the square $2n$-gon can be embedded in. Your answer will be considered correct if its absolute or relative error doesn't exceed $10^{-6}$.
Input
The first line contains a single integer $T$ ($1 \le T \le 200$) — the number of test cases.
Next $T$ lines contain descriptions of test cases — one per line. Each line contains single even integer $n$ ($2 \le n \le 200$). Don't forget you need to embed $2n$-gon, not an $n$-gon.
Output
Print $T$ real numbers — one per test case. For each test case, print the minimum length of a side of the square $2n$-gon can be embedded in. Your answer will be considered correct if its absolute or relative error doesn't exceed $10^{-6}$.
Samples
3
2
4
200
1.000000000
2.414213562
127.321336469