bzoj#P2430. [Poi2003] Chocolate
[Poi2003] Chocolate
题目描述
有一块nm的矩形巧克力,准备将它切成nm块。巧克力上共有n-1条横线和m-1条竖线,你每次可以沿着其中的一条横线或竖线将巧克力切开,无论切割的长短,沿着每条横线切一次的代价依次为y_{1},y_{2},…,y_{n-1},而沿竖线切割的代价依次为x_{1},x_{2},…,x_{m-1}。例如,对于下图64的巧克力, 我们先沿着三条横线切割,需要3刀,得到4条巧克力,然后再将这4条巧克力沿竖线切割,每条都需要5刀,则最终所花费的代价为y_{1}+y_{2}+y_{3}+4(x_{1}+x_{2}+x_{3}+x_{4}+x_{5})。 当然,上述简单切法不见得是最优切法,那么怎样切割该块巧克力,花费的代价最少呢?
输入格式
第一行为两个整数n和m。 接下来n-1行,每行一个整数,分别代表x_{1},x_{2},…,x_{n-1}。 接下来m-1行,每行一个整数,分别代表y_{1},y_{2},…,y_{m-1}。
输出格式
输出一整数,为切割巧克力的最小代价。
6 4
2
1
3
1
4
4
1
2
42
提示
30%的数据,n<=100,m<=100 100%的数据,n<=10000,m<=10000
题目来源
Day1