1 条题解
-
4
出于能恢复的特性 , 炸掉一个点会使某个中枢结点断电的case只可能是以 为源点的所有支配点。
所以求出支配树然后在上面 dp 就好了。
30分就是给 DAG 上求支配树的,比较好写吧。
30pts:
.
#include <cstdio> #include <iostream> #include <vector> #include <queue> #define rep(i,a,b) for(int i=(a);i<=(b);++i) #define rii(x,y) ri(x), ri(y) #define ri3(x,y,z) ri(x), ri(y), ri(z) #define rz resize #define pb push_back using namespace std; typedef vector<int> VI; typedef long long ll; typedef long double ldb; typedef double db; inline void ri(int &x) { x = 0; char ch; int f = 1; do { ch = getchar(); if(ch == '-') f = -1; } while( ch < '0' || ch > '9' ); do { x = (x<<3) + (x<<1) + (ch&15), ch = getchar(); } while( ch >= '0' && ch <= '9' ); x *= f; } VI ind, dep; vector< VI > G, _G, DOM; queue<int> q; vector< VI > fa; int lca(int u, int v) { if(dep[u] < dep[v]) swap(u, v); for(int i = 19; ~i; --i) if(dep[fa[u][i]] >= dep[v]) u = fa[u][i]; if(u == v) return u; for(int i = 19; ~i; --i) if(fa[u][i] != fa[v][i]) u = fa[u][i], v = fa[v][i]; return fa[u][0]; } void topo() { q.push(1); while(!q.empty()) { int cur = q.front(); q.pop(); int pre = 0; if(_G[cur].size()) { pre = _G[cur][0]; for(int i = 1; i < _G[cur].size(); ++i) pre = lca(pre, _G[cur][i]); } fa[cur][0] = pre; dep[cur] = dep[pre] + 1; DOM[pre].pb(cur); for(int i = 1; i < 20; ++i) fa[cur][i] = fa[fa[cur][i-1]][i-1]; for(int ver : G[cur]) if(--ind[ver] == 0) q.push(ver); } } VI vital, f, pt; void dfs(int cur) { f[cur] = 0; for(int ver : DOM[cur]) { dfs(ver); f[cur] += f[ver]; } f[cur] = pt[cur] ? vital[cur] : min(vital[cur], f[cur]); } int main() { int n, m, q, u, v; ri3(n, m, q); vital.rz(n + 1); ind.rz(n + 1); fa.rz(n + 1); dep.rz(n + 1); G.rz(n + 1); _G.rz(n + 1); pt.rz(n + 1); DOM.rz(n + 1); f.rz(n + 1); rep(i,0,n) fa[i].rz(20); rep(i,2,n) ri(vital[i]); vital[1] = 2e9+7; rep(i,1,m) { rii(u, v); G[u].pb(v); _G[v].pb(u); ++ind[v]; } rep(qr,1,q) { ri(u); pt[u] = 1;} topo(); dfs(1); printf("%d\n", f[1]); return 0; }
100pts:
.
#include <cstdio> #include <cstring> #include <vector> #include <algorithm> #include <iostream> #define rep(i,a,b) for(int i=a;i<=(b);++i) #define per(i,a,b) for(int i=a;i>=(b);--i) #define repp(i,a,b) for(int i=a;i<(b);++i) #define perr(i,a,b) for(int i=a;i>(b);--i) #define pb push_back #define rz resize #define VI vector<int> #define rii(x,y) ri(x), ri(y) #define ri3(x,y,z) ri(x), ri(y), ri(z) using namespace std; inline void ri(int &x) { x = 0; char ch; int f = 1; do { ch = getchar(); if(ch == '-') f = -1; } while( ch < '0' || ch > '9' ); do { x = (x<<3) + (x<<1) + (ch&15), ch = getchar(); } while( ch >= '0' && ch <= '9' ); x *= f; } vector< VI > G, _G, DOM; VI dfn, idfn, fa; int dfs_clock = 1; inline int minpt(int u, int v) { return dfn[u] < dfn[v] ? u : v; } VI par, dat, sdom, idom; vector< VI > buc; void dfs(int pre, int cur) { idfn[dfs_clock] = cur; dfn[cur] = dfs_clock++; fa[cur] = pre; for(int ver : G[cur]) if(!dfn[ver]) dfs(cur, ver); } int find(int x) { if(par[x] == x) return x; int p = find(par[x]); if(dfn[sdom[dat[x]]] > dfn[sdom[dat[par[x]]]]) dat[x] = dat[par[x]]; return par[x] = p; } int eval(int x) { find(x); return dat[x]; } void lengauer_tarjan(int n, int r) { dfs_clock = 1; dfs(0, r); --dfs_clock; for(int i = 1; i <= n; ++i) par[i] = dat[i] = sdom[i] = i; for(int i = n; i > 1; --i) { int cur = idfn[i]; for(int ver : _G[cur]) { if(!dfn[ver]) continue; int ev = eval(ver); if(dfn[sdom[cur]] > dfn[sdom[ev]]) sdom[cur] = sdom[ev]; } buc[sdom[cur]].pb(cur); par[cur] = fa[cur]; for(int ver : buc[fa[cur]]) { int ev = eval(ver); if(sdom[ev] == fa[cur]) idom[ver] = fa[cur]; else idom[ver] = ev; } buc[fa[cur]].clear(); } for(int i = 2; i <= dfs_clock; ++i) { int cur = idfn[i]; if(idom[cur] != sdom[cur]) idom[cur] = idom[idom[cur]]; DOM[idom[cur]].pb(cur); } idom[r] = 0; } VI vital, pt; VI f; void work(int cur) { f[cur] = 0; for(int ver : DOM[cur]) { work(ver); f[cur] += f[ver]; } f[cur] = pt[cur] ? vital[cur] : min(f[cur], vital[cur]); } int main() { if(fopen("yl.in", "r")) { freopen("yl.in", "r", stdin); freopen("yl.out", "w", stdout); } int n, m, q, u, v; ri3(n, m, q); G.rz(n + 1); _G.rz(n + 1); DOM.rz(n + 1); dfn.rz(n + 1); idfn.rz(n + 1); fa.rz(n + 1); par.rz(n + 1); dat.rz(n + 1); sdom.rz(n + 1); idom.rz(n + 1); buc.rz(n + 1); vital.rz(n + 1); pt.rz(n + 1); f.rz(n + 1); rep(i,2,n) ri(vital[i]); vital[1] = 2e9 + 7; while(m--) { rii(u, v); G[u].pb(v); _G[v].pb(u); } lengauer_tarjan(n, 1); rep(i,1,q) { ri(u); pt[u] = 1; } work(1); printf("%d\n", f[1]); return 0; }
信息
- ID
- 137
- 时间
- 1000ms
- 内存
- 64MiB
- 难度
- 8
- 标签
- 递交数
- 46
- 已通过
- 9
- 上传者