3 条题解
-
2
#include <bits/stdc++.h> using namespace std; const int N = 1e7 + 5, mod = 998244353; inline int inc(int a, int b) { return (a += b - mod) + (a >> 31 & mod); } inline int dec(int a, int b) { return (a -= b) + (a >> 31 & mod); } inline int mul(int a, int b) { return 1ll * a * b % mod; } inline void Inc(int &a, int b) { return void(a = inc(a, b)); } inline void Dec(int &a, int b) { return void(a = dec(a, b)); } inline void Mul(int &a, int b) { return void(a = mul(a, b)); } inline int Pow(int a, int b) { int c = 1; for (; b; Mul(a, a), b >>= 1) if (1 & b) Mul(c, a); return c; } inline int Inv(int x) { return Pow(x, mod - 2); } int fac[N], inv[N], n, k1, k2, a, b, tot, Sum; inline int Polycoef(int n, int m, int k) { return mul(fac[n + m + k], mul(mul(inv[n], inv[m]), inv[k])); } int main(void) { scanf("%d%d%d%d%d", &k1, &k2, &n, &a, &b); fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = mul(fac[i - 1], i); inv[1] = 1; for (int i = 2; i <= n; i++) inv[i] = mul(mod - mod / i, inv[mod % i]); inv[0] = 1; for (int i = 1; i <= n; i++) Mul(inv[i], inv[i - 1]); for (int i = 0; i <= n; i++) if (i * k1 <= n - 1) { int res = n - 1 - i * k1; if (res % k2) continue; int j = res / k2; if (j > n) continue; Inc(tot, Polycoef(i, j, n - i - j)); } for (int i = 0; i <= n - 1; i++) if (i * k1 <= n - 1 - k1) { int res = n - 1 - k1 - i * k1; if (res % k2) continue; int j = res / k2; if (j > n - 1) continue; Inc(Sum, mul(Polycoef(i, j, n - 1 - i - j), a)); } for (int i = 0; i <= n - 1; i++) if (i * k1 <= n - 1 - k2) { int res = n - 1 - k2 - i * k1; if (res % k2) continue; int j = res / k2; if (j > n - 1) continue; Inc(Sum, mul(Polycoef(i, j, n - 1 - i - j), b)); } Mul(tot, Inv(n)); return printf("%d\n", mul(Sum, Inv(tot))) * 0; }
信息
- ID
- 119
- 时间
- 1000ms
- 内存
- 256MiB
- 难度
- 6
- 标签
- 递交数
- 77
- 已通过
- 47
- 上传者