#ARC110D. [ARC110D] Binomial Coefficient is Fun

[ARC110D] Binomial Coefficient is Fun

Score : 600600 points

Problem Statement

We have a sequence AA of NN non-negative integers.

Compute the sum of i=1N(BiAi)\prod _{i = 1} ^N \dbinom{B_i}{A_i} over all sequences BB of NN non-negative integers whose sum is at most MM, and print it modulo (109+710^9 + 7).

Here, (BiAi)\dbinom{B_i}{A_i}, the binomial coefficient, denotes the number of ways to choose AiA_i objects from BiB_i objects, and is 00 when Bi<AiB_i < A_i.

Constraints

  • All values in input are integers.
  • 1N20001 \leq N \leq 2000
  • 1M1091 \leq M \leq 10^9
  • 0Ai20000 \leq A_i \leq 2000

Input

Input is given from Standard Input in the following format:

NN MM

A1A_1 A2A_2 \ldots ANA_N

Output

Print the sum of i=1N(BiAi)\prod _{i = 1} ^N \dbinom{B_i}{A_i}, modulo (109+7)(10^9 + 7).

3 5
1 2 1
8

There are four sequences BB such that i=1N(BiAi)\prod _{i = 1} ^N \dbinom{B_i}{A_i} is at least 11:

  • B={1,2,1}B = \{1, 2, 1\}, where $\prod _{i = 1} ^N \dbinom{B_i}{A_i} = \dbinom{1}{1} \times \dbinom{2}{2} \times \dbinom{1}{1} = 1$;
  • B={2,2,1}B = \{2, 2, 1\}, where $\prod _{i = 1} ^N \dbinom{B_i}{A_i} = \dbinom{2}{1} \times \dbinom{2}{2} \times \dbinom{1}{1} = 2$;
  • B={1,3,1}B = \{1, 3, 1\}, where $\prod _{i = 1} ^N \dbinom{B_i}{A_i} = \dbinom{1}{1} \times \dbinom{3}{2} \times \dbinom{1}{1} = 3$;
  • B={1,2,2}B = \{1, 2, 2\}, where $\prod _{i = 1} ^N \dbinom{B_i}{A_i} = \dbinom{1}{1} \times \dbinom{2}{2} \times \dbinom{2}{1} = 2$.

The sum of these is 1+2+3+2=81 + 2 + 3 + 2 = 8.

10 998244353
31 41 59 26 53 58 97 93 23 84
642612171