#ARC060B. [ABC044D] 桁和

[ABC044D] 桁和

Score : 500500 points

Problem Statement

For integers b(b2)b (b \geq 2) and n(n1)n (n \geq 1), let the function f(b,n)f(b,n) be defined as follows:

  • f(b,n)=nf(b,n) = n, when n<bn < b
  • $f(b,n) = f(b,\,{\rm floor}(n / b)) + (n \ {\rm mod} \ b)$, when nbn \geq b

Here, floor(n/b){\rm floor}(n / b) denotes the largest integer not exceeding n/bn / b, and n mod bn \ {\rm mod} \ b denotes the remainder of nn divided by bb.

Less formally, f(b,n)f(b,n) is equal to the sum of the digits of nn written in base bb. For example, the following hold:

  • f(10,87654)=8+7+6+5+4=30f(10,\,87654)=8+7+6+5+4=30
  • f(100,87654)=8+76+54=138f(100,\,87654)=8+76+54=138

You are given integers nn and ss. Determine if there exists an integer b(b2)b (b \geq 2) such that f(b,n)=sf(b,n)=s. If the answer is positive, also find the smallest such bb.

Constraints

  • 1n10111 \leq n \leq 10^{11}
  • 1s10111 \leq s \leq 10^{11}
  • n,sn,\,s are integers.

Input

The input is given from Standard Input in the following format:

nn

ss

Output

If there exists an integer b(b2)b (b \geq 2) such that f(b,n)=sf(b,n)=s, print the smallest such bb. If such bb does not exist, print -1 instead.

87654
30
10
87654
138
100
87654
45678
-1
31415926535
1
31415926535
1
31415926535
-1