昨天上物理课,老师讲到人可通过声音传到两耳的时间差辨别声源的方位,然后我自已脑补了一个题目:

在平面直角坐标系中,已知点A(x1,y1)A(x_{1},y_{1}),B(x2,y2)B(x_{2},y_{2}),PP到点AAB、B的距离分别为s1,s2s_{1},s{2}s1+s2>(x1x2)2+(y1y2)2s_{1}+s_{2}>\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2},求点P的坐标。

首先我们来思考一下:点PP共有几个呢?这里需要用到圆的一个性质:圆心为O,半径为r的圆可以看成是所有到点O的距离等于r的点的集合,因此我们分别以点ABA、B为圆心,s1,s2s_{1},s_{2}为半径画圆,两个圆分别为到点AA距离为s1s_{1}和到点BB距离为s2s_{2}的点的集合,那么这两个集合的交集即两圆的交点便是所求的点PP。因为s1+s2>(x1x2)2+(y1y2)2s_{1}+s_{2}>\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2},所以两圆相切,有两个交点,即点PP22个。

图1

分别将这两个点记为P1P_{1}P2P_{2},我们先来研究P1P_{1}

连接AP1AP_{1}BP1BP_{1},则AP1=s1AP_{1}=s_{1}BP1=s2BP_{1}=s_{2},又知AB=(x1x2)2+(y1y2)2AB=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2},那么就可以直接套用海伦公式:

记$a=s_{1},b=s_{2},c=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2},p=\frac{a+b+c}{2}$,则SABP1=(pa)(pb)(pc)S\triangle ABP_{1}=\sqrt{(p-a)(p-b)(p-c)}.

过点P1P_{1}P1CABP_{1}C\bot AB.

图2

$\because AB=a,S\triangle ABP_{1}=\sqrt{(p-a)(p-b)(p-c)},P_{1}C\bot AB$

$\therefore P_{1}C=\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a}$

$\therefore AC=\sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a})^2}$(勾股定理).

然后我们把ABP1\triangle ABP_{1}单独拎出来看看:

ACAC上截取DC=P1CDC=P_{1}C,记点CC的坐标为(x3,y3)(x_{3},y_{3}),点DD的坐标为(x4,y4)(x_{4},y_{4})。将ABP1\triangle ABP_{1}置于平面直角坐标系中,过点CCEFEF平行于yy轴,过点DDDGEFDG\bot EF,过点P1P_{1}P1HEFP_{1}H\bot EF

$\because P_{1}C=\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a},DC=P_{1}C,AC=\sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a})^2}$

$\therefore AD=\sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a})^2}-\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a}$,将ADAD记为s3s_{3}.

图3

AASAASASAASA可证得,CP1HDCG\triangle CP_{1}H\simeq\triangle DCGCH=DG,P1H=CG\therefore CH=DG,P_{1}H=CG.

$\therefore P_{1}(x_{3}-y_{3}+y_{4},y_{3}+x_{3}-x_{4})$.

至此,问题转化为了求点C,DC,D的坐标。

如何求呢?我们知道一次函数的图像为一条直线,那么我们可以将ABAB看成一次函数.

ABAB的解析式为y=kx+by=kx+b,则有$\left\{\begin{aligned}kx_{1}+b=y_{1} \\kx_{2}+b=y_{2}\end{aligned}\right.$,解得$\left\{\begin{aligned}k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\b=\frac{x_{2}y_{1}+x_{1}y_{2}}{x_{2}-x_{1}}\end{aligned}\right.$,即$y=\frac{x(y_{2}-y_{1})}{x_{2}-x_{1}}+\frac{x_{2}y_{1}+x_{1}y_{2}}{x_{2}-x_{1}}=\frac{y_{1}(x_{2}-x)+y_{2}(x_{1}-x)}{x_{2}-x_{1}}$.这里因式子太长,姑且暂时记为y=kx+by=kx+b.

x4=x1+temp1x_{4}=x_{1}+temp_{1},则y4=y1+ktemp1y_{4}=y_{1}+k*temp_{1}.

AD=s3\because AD=s_{3}

$\therefore s_{3}=\sqrt{temp_{1}^2+(k*temp_{1})^2}=\sqrt{temp_{1}^2(k^2+1)}$

temp12(k2+1)=s32\therefore temp_{1}^2(k^2+1)=s_{3}^2

temp12=s32k2+1\therefore temp_{1}^2=\frac{s_{3}^2}{k^2+1}

$\therefore temp_{1}=\sqrt{\frac{s_{3}^2}{k^2+1}}=\frac{s_{3}}{\sqrt{k^2+1}}=\frac{s_{3}*\sqrt{k^2+1}}{\sqrt{k^2+1}*\sqrt{k^2+1}}=\frac{s_{3}*\sqrt{k^2+1}}{k^2+1}$.

$\therefore x_{4}=x_{1}+\frac{s_{3}*\sqrt{k^2+1}}{k^2+1},y_{4}=y_{1}+\frac{k*s_{3}*\sqrt{k^2+1}}{k^2+1}$.

至此,我们求得了x4x_{4}y4y_{4},还需要求x3,y3x_{3},y_{3}

AC=s4,x3=x1+temp2AC=s_{4},x_{3}=x_{1}+temp_{2},则有y3=y1+ktemp2y_{3}=y_{1}+k*temp_{2}.

$\therefore s_{4}=\sqrt{temp_{2}^2+(k*temp_{2})^2}=\sqrt{temp_{2}^2(k^2+1)}$

temp22(k2+1)=s42\therefore temp_{2}^2(k^2+1)=s_{4}^2

temp22=s42k2+1\therefore temp_{2}^2=\frac{s_{4}^2}{k^2+1}

$\therefore temp_{2}=\sqrt{\frac{s_{4}^2}{k^2+1}}=\frac{s_{4}}{\sqrt{k^2+1}}=\frac{s_{4}*\sqrt{k^2+1}}{\sqrt{k^2+1}*\sqrt{k^2+1}}=\frac{s_{4}*\sqrt{k^2+1}}{k^2+1}$

$\therefore x_{3}=x_{1}+\frac{s_{4}*\sqrt{k^2+1}}{k^2+1},y_{3}=y_{1}+\frac{k*s_{4}*\sqrt{k^2+1}}{k^2+1}$

$\therefore P_{1}(x_{1}+\frac{\sqrt{k^2+1}(s_{4}-k*s_{4}+k*s_{3})}{k^2+1},y_{1}+\frac{\sqrt{k^2+1}(s_{4}+k*s_{4}-s_{3})}{k^2+1})$,其中k=y2y1x2x1k=\frac{y_{2}-y_{1}}{x_{2}-x{1}},$s_{3}=\sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a})^2}-\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a}$,$s_{4}=\sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-c)(p-c)}}{a})}$,a=s1a=s_{1}b=s2b=s_{2}c=(x1x2)2+(y1y2)2c=\sqrt{(x_{1}-x{2})^2+(y_{1}-y_{2})^2}p=a+b+c2p=\frac{a+b+c}{2}.

同理可得,P2(x3+y3y4,y3x3+x4)P_{2}(x_{3}+y_{3}-y_{4},y_{3}-x_{3}+x_{4}).

$\therefore P_{2}(x_{1}+\frac{\sqrt{k^2+1}(s_{4}+k*s_{4}-k*s_{3})}{k^2+1},y_{1}+\frac{\sqrt{k^2+1}(k*s_{4}-s_{4}+s_{3})}{k^2+1}) $,其中k=y2y1x2x1k=\frac{y_{2}-y_{1}}{x_{2}-x{1}},$s_{3}=\sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a})^2}-\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a}$,$s_{4}=\sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-c)(p-c)}}{a})}$,a=s1a=s_{1}b=s2b=s_{2}c=(x1x2)2+(y1y2)2c=\sqrt{(x_{1}-x{2})^2+(y_{1}-y_{2})^2}p=a+b+c2p=\frac{a+b+c}{2}.

求完了!!!

然而似乎还有一步:

验证

根据图形,我们知道:当s1+s2=(x1x2)2+(y1y2)2s_{1}+s_{2}=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2}时,PP点只有一个,即此时P1,P2P_{1},P_{2}重合.

ks4=ks3,s4=s3\therefore k*s_{4}=k*s_{3},s_{4}=s_{3}

s4=s3\therefore s_{4}=s_{3}

$\therefore \sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a})^2}=\sqrt{s_{1}^2-(\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a})^2}-\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a}$

2(pa)(pb)(pc)a=0\therefore \frac{2\sqrt{(p-a)(p-b)(p-c)}}{a}=0

那么,2(pa)(pb)(pc)a\frac{2\sqrt{(p-a)(p-b)(p-c)}}{a}是否等于00呢?

$\because s_{1}+s_{2}=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2}$

a+b=c\therefore a+b=c

p=a+b+c2\therefore p=\frac{a+b+c}{2}

p=c+c2=c\therefore p=\frac{c+c}{2}=c

pc=0\therefore p-c=0

2(pa)(pb)(pc)a=0\therefore \frac{2\sqrt{(p-a)(p-b)(p-c)}}{a}=0

s4=s3\therefore s_{4}=s_{3}

\therefore得证.

完结撒花!!!

2023/9/162023/9/16


下一篇:随笔#2023/9/17