题目描述
小蓝有一个长度均为 n 且仅由数字字符 0∼9 组成的字符串,下标从 0 到 n−1,你可以将其视作是一个具有 n 位的十进制数字 num,小蓝可以从 num 中选出一段连续的子串并将子串进行反转,最多反转一次。小蓝想要将选出的子串进行反转后再放入原位置处得到的新的数字 numnew 满足条件 numnew<num,请你帮他计算下一共有多少种不同的子串选择方案,只要两个子串在 num 中的位置不完全相同我们就视作是不同的方案。
注意,我们允许前导零的存在,即数字的最高位可以是 0,这是合法的。
输入格式
输入一行包含一个长度为 n 的字符串表示 num(仅包含数字字符 0∼9),从左至右下标依次为 0∼n−1。
输出格式
输出一行包含一个整数表示答案。
210102
8
提示
【样例说明】
一共有 8 种不同的方案:
- 所选择的子串下标为 0∼1,反转后的 numnew=120102<210102;
- 所选择的子串下标为 0∼2,反转后的 numnew=012102<210102;
- 所选择的子串下标为 0∼3,反转后的 numnew=101202<210102;
- 所选择的子串下标为 0∼4,反转后的 numnew=010122<210102;
- 所选择的子串下标为 0∼5,反转后的 numnew=201012<210102;
- 所选择的子串下标为 1∼2,反转后的 numnew=201102<210102;
- 所选择的子串下标为 1∼4,反转后的 numnew=201012<210102;
- 所选择的子串下标为 3∼4,反转后的 numnew=210012<210102。
【评测用例规模与约定】
对于 20% 的评测用例,1≤n≤100;
对于 40% 的评测用例,1≤n≤1000;
对于所有评测用例,1≤n≤5000。