luogu#P7980. [JRKSJ R3] a question

    ID: 11976 远端评测题 2000ms 512MiB 尝试: 0 已通过: 0 难度: 5 上传者: 标签>2021洛谷原创O2优化深度优先搜索,DFS

[JRKSJ R3] a question

题目背景

这是一个问题。

题目描述

现在有一棵 nn 个结点的树 T\text{T},边带权,结点的编号为 [1,n][1,n] 的排列。

G\text{G}T\text{T} 的补图。对于 G\text{G} 上的每一条边 (x,y)(x,y),该边的权值为 T\text{T}xyx\rightarrow y 的路径上的边权和。

dis(x,y)dis(x,y)G\text{G}x,yx,y 两点之间的最短路径的长度。若 x,yx,y 两点不连通,则令 dis(x,y)=0dis(x,y)=0

求 $\displaystyle\sum_{i=1}^{n-1} \sum_{j=i+1}^n dis(i,j)$。

输入格式

输入的所有数都为整数。

第一行一个数 nn
接下来 n1n-1 行每行三个数 u,v,wu,v,w 表示 T\text{T} 中有一条连接 u,vu,v 且边权为 ww 的边。

输出格式

输出一个数表示答案,由于答案很大,请对 109+710^9+7 取模。

3
1 2 2
2 3 3
5
4
1 2 4
2 3 4
3 4 4
96

提示

T\text{T} 的补图 G\text{G} 的定义为:对于边 (x,y)(1x,yn,xy)(x,y)(1\le x,y\le n,x\ne y),若 T\text{T} 中不存在该边 ,则 G\text{G} 中存在该边;若 T\text{T} 中存在该边 ,则 G\text{G} 中不存在该边。G\text{G} 为无向图。

样例解释

对于样例 22,图 G\text{G} 如图所示:

3

我们有: | dis(i,j)dis(i,j) | j=1j=1 | j=2j=2 | j=3j=3 | j=4j=4 | | :----------: | :----------: | :----------: | :----------: | :----------: | | i=1i=1 | | 2020 | 88 | 1212 | | i=2i=2 | | | 2828 | 88 | | i=3i=3 | | | | 2020 |

所以答案为 9696

数据规模

Subtask\text{Subtask} nn\le 特殊性质 分值 子任务依赖
11 10310^3 1010
22 10410^4 2020 11
33 2×1062\times 10^6 树为菊花
44 树为链
55 3030 1,2,3,41,2,3,4

对于 100%100\% 的数据,2n2×1062\le n \le 2\times 10^61x,yn1\le x,y\le n0v1090\le v\le 10^9

本题输入文件较大,请使用恰当的读入方式。