luogu#P3978. [TJOI2015] 概率论
[TJOI2015] 概率论
题目描述
为了提高智商,ZJY 开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的 个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?
判断两棵树是否同构的伪代码如下:
$$\def\arraystretch{1.2} \begin{array}{ll} \hline \textbf{算法 1}&\text{Check}(T1,T2) \\ \hline 1&\textbf{Require: }\text{ 两棵树的节点}T1,T2\\ 2&\qquad\textbf{if}\ \ T1=\text{null}\textbf{ or }T2=\text{null}\textbf{ then }\\ 3&\qquad\qquad\textbf{return}\ \ T1=\text{null}\textbf{ and }T2=\text{null}\\ 4&\qquad\textbf{else}\\ 5&\qquad\qquad\textbf{return}\ \text{Check}(T1\to\mathit{leftson},T2\to\mathit{leftson}) \\ & \qquad\qquad\qquad \textbf{ and }\text{Check}(T1\to\mathit{rightson},T2\to\mathit{rightson})\\ 6&\qquad\textbf{endif}\\ \hline \end{array} $$输入格式
输入一个正整数 ,表示有根树的结点数。
输出格式
输出这棵树期望的叶子节点数,要求误差小于 。
1
1.000000000
3
1.200000000
提示
数据范围
对于 的数据,。
对于 的数据,。
对于 的数据,。