loj#P3365. 「IOI2020」连接擎天树

「IOI2020」连接擎天树

题目描述

注意:在 LibreOJ 上,由于语言限制,目前只支持以下语言的提交:

  • C++ 11
  • C++ 11 (Clang)
  • C++ 11 (NOI)
  • C++ 17
  • C++ 17 (Clang)

滨海湾花园是新加坡的一个大型自然公园。公园内有 nn 个塔,称之为「擎天树」。这些塔的编号为 00n1n-1。我们希望建立一个桥的集合(桥的数目大于等于 00)。每一座桥连接两个不同的塔,而且可以双向通行。没有两座桥连接相同的一对塔。

一条从塔 xx 到塔 yy 的路径是一个满足以下条件的塔序列(塔的数目大于等于 11):

  • 序列的第一个元素是 xx

  • 序列的最后一个元素是 yy

  • 序列中所有元素互不相同

  • 序列中每两个相邻元素(塔)都是被某一座桥连接起来的。

注意根据定义,一个塔到它自己有且仅有一条路径,并且从塔 ii 到塔 jj 的不同路径的数目和从塔 jj 到塔 ii 的不同路径的数目是一样的。

负责该项设计的首席设计师希望待建造的桥梁要符合:任意给定 0i,jn10\le i,j\le n-1,恰好有 pi,jp_{i,j} 条从塔 ii 到塔 jj 的不同路径,其中 0pi,j30\le p_{i,j}\le 3

请构造一个桥的集合来满足设计师的要求,或判定这样的桥梁集合不可能存在。

实现细节

你需要实现下面的这个函数:

int construct(std::vector<std::vector<int>> p)
  • pp:一个表示设计师要求的 n×nn\times n 数组。

  • 如果这个建设方案是存在的,该函数应该恰好调用一次 build(见下文)来给出建设方案,然后应返回 11

否则,该函数应该返回 00,并且不要调用 build

该函数将被调用恰好一次。

函数 build 定义如下:

void build(std::vector<std::vector<int>> b)
  • bb:一个 n×nn\times n 的数组,bi,j=1b_{i,j}=1 表示有一座桥连接塔 ii 和塔 jj,否则 bi,j=0b_{i,j}=0

注意该数组必须满足:对所有 0i,jn10\le i,j\le n-1bi,j=bj,ib_{i,j} = b_{j,i};并且对所有 0in10\le i\le n-1bi,i=0b_{i,i}=0

评测程序示例

评测程序示例以如下格式读取输入数据:

  • 11 行:nn
  • 2+i2+i 行(0in10\le i\le n-1):pi,0 pi,1  pi,n1p_{i,0}\ p_{i,1}\ \cdots\ p_{i,n-1}

评测程序示例的输出格式如下:

  • 11 行: construct 的返回值。

如果 construct 的返回值为 11,评测程序示例会额外打印:

  • 2+i2+i 行(0in10\le i\le n-1):bi,0 bi,1  bi,n1b_{i,0}\ b_{i,1}\ \cdots\ b_{i,n-1}
4
1 1 2 2
1 1 2 2
2 2 1 2
2 2 2 1
1
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
2
1 0
0 1
1
0 0
0 0
2
1 3
3 1
0

数据范围与提示

对于 100%100\% 的数据,满足:

  • 1n10001\le n\le 1000
  • pi,i=1p_{i,i}=1(对所有 0in10\le i\le n-1
  • pi,j=pj,ip_{i,j}=p_{j,i}(对所有 0i,jn10\le i,j\le n-1
  • 0pi,j30\le p_{i,j}\le 3(对所有 0i,jn10\le i, j\le n-1
子任务 附加限制 分值
11 pi,j=1p_{i,j}=1(对所有 0i,jn10\le i,j\le n-1 1111
22 pi,j{0,1}p_{i,j}\in \{0,1\}(对所有 0i,jn10\le i,j\le n-1 1010
33 pi,j{0,2}p_{i,j}\in \{0,2\}(对所有 ij,0i,jn1i\neq j,0\le i,j\le n-1 1919
44 0pi,j20\le p_{i,j}\le 2(对所有 0i,jn10\le i,j\le n-1)并且至少有一种建设方案满足要求 3535
55 0pi,j20\le p_{i,j}\le 2(对所有 0i,jn10\le i,j\le n-1 2121
66 没有额外约束条件 44