loj#P3037. 「JOISC 2019 Day3」开关游戏

「JOISC 2019 Day3」开关游戏

题目描述

题目译自 JOISC 2019 Day3 T2「ランプ / Lamps

走廊里有 NN 盏灯,灯依次编为 1N1\cdots N 号。灯要么处于开启状态,要么处于关闭状态。

你有三种操作:

  • OFF 操作:选择两个整数 p,qp,q (1pqN)(1\le p\le q\le N),关闭 pqp\sim q 号灯;
  • ON 操作:选择两个整数 p,qp,q (1pqN)(1\le p\le q\le N),打开 pqp\sim q 号灯;
  • TOG 操作:选择两个整数 p,qp,q (1pqN)(1\le p\le q\le N),将 pqp\sim q 号灯的状态取反(开→关,关→开)。

给出开始时灯的亮暗状态(00 表示关闭,11 表示开启),再给出目标状态,试求至少需要几次操作灯才能从开始状态变为目标状态。

输入格式

从标准输入中读入三行,第一行一个正整数 NN。接下来两行分别为灯的初始状态和目标状态,保证均为长度为 NN0101 序列。

输出格式

输出到标准输出,一行一个整数,表示从开始状态变为目标状态的最少操作数。

8
11011100
01101001
4
13
1010010010100
0000111001011
3
18
001100010010000110
110110001000100101
5

数据范围与提示

对于所有数据,1N1061\le N\le 10^6

子任务 1 2 3 4
分值 6 41 4 49
附加条件 N18N\le 18 N2000N\le 2000 开始时灯全部处于关闭状态 无附加条件