codeforces#P660B. Seating On Bus
Seating On Bus
Description
Consider 2n rows of the seats in a bus. n rows of the seats on the left and n rows of the seats on the right. Each row can be filled by two people. So the total capacity of the bus is 4n.
Consider that m (m ≤ 4n) people occupy the seats in the bus. The passengers entering the bus are numbered from 1 to m (in the order of their entering the bus). The pattern of the seat occupation is as below:
1-st row left window seat, 1-st row right window seat, 2-nd row left window seat, 2-nd row right window seat, ... , n-th row left window seat, n-th row right window seat.
After occupying all the window seats (for m > 2n) the non-window seats are occupied:
1-st row left non-window seat, 1-st row right non-window seat, ... , n-th row left non-window seat, n-th row right non-window seat.
All the passengers go to a single final destination. In the final destination, the passengers get off in the given order.
1-st row left non-window seat, 1-st row left window seat, 1-st row right non-window seat, 1-st row right window seat, ... , n-th row left non-window seat, n-th row left window seat, n-th row right non-window seat, n-th row right window seat.
You are given the values n and m. Output m numbers from 1 to m, the order in which the passengers will get off the bus.
The only line contains two integers, n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 4n) — the number of pairs of rows and the number of passengers.
Print m distinct integers from 1 to m — the order in which the passengers will get off the bus.
Input
The only line contains two integers, n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 4n) — the number of pairs of rows and the number of passengers.
Output
Print m distinct integers from 1 to m — the order in which the passengers will get off the bus.
Samples
2 7
5 1 6 2 7 3 4
9 36
19 1 20 2 21 3 22 4 23 5 24 6 25 7 26 8 27 9 28 10 29 11 30 12 31 13 32 14 33 15 34 16 35 17 36 18