codeforces#P510E. Fox And Dinner
Fox And Dinner
Description
Fox Ciel is participating in a party in Prime Kingdom. There are n foxes there (include Fox Ciel). The i-th fox is ai years old.
They will have dinner around some round tables. You want to distribute foxes such that:
- Each fox is sitting at some table.
- Each table has at least 3 foxes sitting around it.
- The sum of ages of any two adjacent foxes around each table should be a prime number.
If k foxes f1, f2, ..., fk are sitting around table in clockwise order, then for 1 ≤ i ≤ k - 1: fi and fi + 1 are adjacent, and f1 and fk are also adjacent.
If it is possible to distribute the foxes in the desired manner, find out a way to do that.
The first line contains single integer n (3 ≤ n ≤ 200): the number of foxes in this party.
The second line contains n integers ai (2 ≤ ai ≤ 104).
If it is impossible to do this, output "Impossible".
Otherwise, in the first line output an integer m (): the number of tables.
Then output m lines, each line should start with an integer k -=– the number of foxes around that table, and then k numbers — indices of fox sitting around that table in clockwise order.
If there are several possible arrangements, output any of them.
Input
The first line contains single integer n (3 ≤ n ≤ 200): the number of foxes in this party.
The second line contains n integers ai (2 ≤ ai ≤ 104).
Output
If it is impossible to do this, output "Impossible".
Otherwise, in the first line output an integer m (): the number of tables.
Then output m lines, each line should start with an integer k -=– the number of foxes around that table, and then k numbers — indices of fox sitting around that table in clockwise order.
If there are several possible arrangements, output any of them.
Samples
4
3 4 8 9
1
4 1 2 4 3
5
2 2 2 2 2
Impossible
12
2 3 4 5 6 7 8 9 10 11 12 13
1
12 1 2 3 6 5 12 9 8 7 10 11 4
24
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
3
6 1 2 3 6 5 4
10 7 8 9 12 15 14 13 16 11 10
8 17 18 23 22 19 20 21 24
Note
In example 1, they can sit around one table, their ages are: 3-8-9-4, adjacent sums are: 11, 17, 13 and 7, all those integers are primes.
In example 2, it is not possible: the sum of 2+2 = 4 is not a prime number.