bzoj#P4459. [Jsoi2013] 丢番图
[Jsoi2013] 丢番图
题目描述
丢番图是亚历山大时期埃及著名的数学家。他是最早研究整数系数不定方程的数学家之一。 为了纪念他,这些方程一般被称作丢番图方程。最著名的丢番图方程之一是x^N+y^n=z^N。费马 提出,对于N>2,x,y,z没有正整数解。这被称为“费马大定理”,它的证明直到最近才被安德 鲁·怀尔斯(AndrewWiles)证明。 考虑如下的丢番图方程: 1/x+1/y=1/n(x,y,n属于N+) (1) 小G对下面这个问题十分感兴趣:对于一个给定的正整数n,有多少种本质不同的解满足方 程(1)?例如n=4,有三种本质不同(x≤y)的解: 1/5+1/20=1/4 1/6+1/12=1/4 1/8+1/8=1/4 显然,对于更大的n,没有意义去列举所有本质不同的解。你能否帮助小G快速地求出对于 给定n,满足方程(1)的本质不同的解的个数?
输入格式
一行,仅一个整数n(1<=N<=10^14)
输出格式
一行,输出对于给定整数n,满足方程(1)的本质不同的解的个数。
4
3
提示
没有写明提示
题目来源
By 佚名上传