atcoder#ARC111A. [ARC111A] Simple Math 2

[ARC111A] Simple Math 2

Score : 300300 points

Problem Statement

Given positive integers NN and MM, find the remainder when 10NM\lfloor \frac{10^N}{M} \rfloor is divided by MM.

What is $\lfloor x \rfloor$? $$\lfloor x \rfloor$$$$x$$- $\lfloor 2.5 \rfloor = 2$ - $\lfloor 3 \rfloor = 3$ - $\lfloor 9.9999999 \rfloor = 9$ - $\lfloor \frac{100}{3} \rfloor = \lfloor 33.33... \rfloor = 33$
## Constraints - $1 \leq N \leq 10^{18}$ - $1 \leq M \leq 10000$ ## Input Input is given from Standard Input in the following format: > $N$ $M$ ## Output Print the answer. ```input1 1 2 ``` ```output1 1 ``` We have $\lfloor \frac{10^1}{2} \rfloor = 5$, so we should print the remainder when $5$ is divided by $2$, that is, $1$. ```input2 2 7 ``` ```output2 0 ``` ```input3 1000000000000000000 9997 ``` ```output3 9015 ```$$