atcoder#ARC095B. [ABC094D] Binomial Coefficients

[ABC094D] Binomial Coefficients

Score : 400400 points

Problem Statement

Let comb(n,r){\rm comb}(n,r) be the number of ways to choose rr objects from among nn objects, disregarding order. From nn non-negative integers a1,a2,...,ana_1, a_2, ..., a_n, select two numbers ai>aja_i > a_j so that comb(ai,aj){\rm comb}(a_i,a_j) is maximized. If there are multiple pairs that maximize the value, any of them is accepted.

Constraints

  • 2n1052 \leq n \leq 10^5
  • 0ai1090 \leq a_i \leq 10^9
  • a1,a2,...,ana_1,a_2,...,a_n are pairwise distinct.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

nn

a1a_1 a2a_2 ...... ana_n

Output

Print aia_i and aja_j that you selected, with a space in between.

5
6 9 4 2 11
11 6

comb(ai,aj)\rm{comb}(a_i,a_j) for each possible selection is as follows:

  • comb(4,2)=6\rm{comb}(4,2)=6
  • comb(6,2)=15\rm{comb}(6,2)=15
  • comb(6,4)=15\rm{comb}(6,4)=15
  • comb(9,2)=36\rm{comb}(9,2)=36
  • comb(9,4)=126\rm{comb}(9,4)=126
  • comb(9,6)=84\rm{comb}(9,6)=84
  • comb(11,2)=55\rm{comb}(11,2)=55
  • comb(11,4)=330\rm{comb}(11,4)=330
  • comb(11,6)=462\rm{comb}(11,6)=462
  • comb(11,9)=55\rm{comb}(11,9)=55

Thus, we should print 1111 and 66.

2
100 0
100 0