atcoder#ARC078A. [ABC067C] Splitting Pile

[ABC067C] Splitting Pile

Score : 300300 points

Problem Statement

Snuke and Raccoon have a heap of NN cards. The ii-th card from the top has the integer aia_i written on it.

They will share these cards. First, Snuke will take some number of cards from the top of the heap, then Raccoon will take all the remaining cards. Here, both Snuke and Raccoon have to take at least one card.

Let the sum of the integers on Snuke's cards and Raccoon's cards be xx and yy, respectively. They would like to minimize xy|x-y|. Find the minimum possible value of xy|x-y|.

Constraints

  • 2N2×1052 \leq N \leq 2 \times 10^5
  • 109ai109-10^{9} \leq a_i \leq 10^{9}
  • aia_i is an integer.

Input

Input is given from Standard Input in the following format:

NN

a1a_1 a2a_2 ...... aNa_{N}

Output

Print the answer.

6
1 2 3 4 5 6
1

If Snuke takes four cards from the top, and Raccoon takes the remaining two cards, x=10x=10, y=11y=11, and thus xy=1|x-y|=1. This is the minimum possible value.

2
10 -10
20

Snuke can only take one card from the top, and Raccoon can only take the remaining one card. In this case, x=10x=10, y=10y=-10, and thus xy=20|x-y|=20.