atcoder#AGC038C. [AGC038C] LCMs

[AGC038C] LCMs

Score : 700700 points

Problem Statement

We have an integer sequence of length NN: A0,A1,,AN1A_0,A_1,\cdots,A_{N-1}.

Find the following sum (lcm(a,b)\mathrm{lcm}(a, b) denotes the least common multiple of aa and bb):

  • $\sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} \mathrm{lcm}(A_i,A_j)$

Since the answer may be enormous, compute it modulo 998244353998244353.

Constraints

  • 1N2000001 \leq N \leq 200000
  • 1Ai10000001 \leq A_i \leq 1000000
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

A0 A1  AN1A_0\ A_1\ \cdots\ A_{N-1}

Output

Print the sum modulo 998244353998244353.

3
2 4 6
22

$\mathrm{lcm}(2,4)+\mathrm{lcm}(2,6)+\mathrm{lcm}(4,6)=4+6+12=22$.

8
1 2 3 4 6 8 12 12
313
10
356822 296174 484500 710640 518322 888250 259161 609120 592348 713644
353891724