atcoder#AGC031E. [AGC031E] Snuke the Phantom Thief

[AGC031E] Snuke the Phantom Thief

Score : 13001300 points

Problem Statement

A museum exhibits NN jewels, Jewel 1,2,...,N1, 2, ..., N. The coordinates of Jewel ii are (xi,yi)(x_i, y_i) (the museum can be regarded as a two-dimensional plane), and the value of that jewel is viv_i.

Snuke the thief will steal some of these jewels.

There are MM conditions, Condition 1,2,...,M1, 2, ..., M, that must be met when stealing jewels, or he will be caught by the detective. Each condition has one of the following four forms:

  • (tit_i =L, aia_i, bib_i) : Snuke can only steal at most bib_i jewels whose xx coordinates are aia_i or smaller.
  • (tit_i =R, aia_i, bib_i) : Snuke can only steal at most bib_i jewels whose xx coordinates are aia_i or larger.
  • (tit_i =D, aia_i, bib_i) : Snuke can only steal at most bib_i jewels whose yy coordinates are aia_i or smaller.
  • (tit_i =U, aia_i, bib_i) : Snuke can only steal at most bib_i jewels whose yy coordinates are aia_i or larger.

Find the maximum sum of values of jewels that Snuke the thief can steal.

Constraints

  • 1N801 \leq N \leq 80
  • 1xi,yi1001 \leq x_i, y_i \leq 100
  • 1vi10151 \leq v_i \leq 10^{15}
  • 1M3201 \leq M \leq 320
  • tit_i is L, R, U or D.
  • 1ai1001 \leq a_i \leq 100
  • 0biN10 \leq b_i \leq N - 1
  • (xi,yi)(x_i, y_i) are pairwise distinct.
  • (ti,ai)(t_i, a_i) are pairwise distinct.
  • (ti,bi)(t_i, b_i) are pairwise distinct.

Input

Input is given from Standard Input in the following format:

NN

x1x_1 y1y_1 v1v_1

x2x_2 y2y_2 v2v_2

::

xNx_N yNy_N vNv_N

MM

t1t_1 a1a_1 b1b_1

t2t_2 a2a_2 b2b_2

::

tMt_M aMa_M bMb_M

Output

Print the maximum sum of values of jewels that Snuke the thief can steal.

7
1 3 6
1 5 9
3 1 8
4 3 8
6 2 9
5 4 11
5 7 10
4
L 3 1
R 2 3
D 5 3
U 4 2
36

Figure

Stealing Jewel 1,5,61, 5, 6 and 77 results in the total value of 3636.

3
1 2 3
4 5 6
7 8 9
1
L 100 0
0
4
1 1 10
1 2 11
2 1 12
2 2 13
3
L 8 3
L 9 2
L 10 1
13
10
66 47 71040136000
65 77 74799603000
80 53 91192869000
24 34 24931901000
91 78 49867703000
68 71 46108236000
46 73 74799603000
56 63 93122668000
32 51 71030136000
51 26 70912345000
21
L 51 1
L 7 0
U 47 4
R 92 0
R 91 1
D 53 2
R 65 3
D 13 0
U 63 3
L 68 3
D 47 1
L 91 5
R 32 4
L 66 2
L 80 4
D 77 4
U 73 1
D 78 5
U 26 5
R 80 2
R 24 5
305223377000