atcoder#ABC292C. [ABC292C] Four Variables

[ABC292C] Four Variables

Score : 300300 points

Problem Statement

You are given a positive integer NN. Find the number of quadruples of positive integers (A,B,C,D)(A,B,C,D) such that AB+CD=NAB + CD = N.

Under the constraints of this problem, it can be proved that the answer is at most 9×10189 \times 10^{18}.

Constraints

  • 2N2×1052 \leq N \leq 2 \times 10^5
  • NN is an integer.

Input

The input is given from Standard Input in the following format:

NN

Output

Print the answer.

4
8

Here are the eight desired quadruples.

  • (A,B,C,D)=(1,1,1,3)(A,B,C,D)=(1,1,1,3)
  • (A,B,C,D)=(1,1,3,1)(A,B,C,D)=(1,1,3,1)
  • (A,B,C,D)=(1,2,1,2)(A,B,C,D)=(1,2,1,2)
  • (A,B,C,D)=(1,2,2,1)(A,B,C,D)=(1,2,2,1)
  • (A,B,C,D)=(1,3,1,1)(A,B,C,D)=(1,3,1,1)
  • (A,B,C,D)=(2,1,1,2)(A,B,C,D)=(2,1,1,2)
  • (A,B,C,D)=(2,1,2,1)(A,B,C,D)=(2,1,2,1)
  • (A,B,C,D)=(3,1,1,1)(A,B,C,D)=(3,1,1,1)
292
10886
19876
2219958