atcoder#ABC283F. [ABC283F] Permutation Distance

[ABC283F] Permutation Distance

Score : 500500 points

Problem Statement

You are given a permutation P=(P1,P2,,PN)P=(P _ 1,P _ 2,\ldots,P _ N) of (1,2,,N)(1,2,\ldots,N).

Find the following value for all i (1iN)i\ (1\leq i\leq N):

  • $D _ i=\displaystyle\min_{j\neq i}\left\lparen\left\lvert P _ i-P _ j\right\rvert+\left\lvert i-j\right\rvert\right\rparen$.
What is a permutation?

A permutation of (1,2,\ldots,N) is a sequence that is obtained by rearranging (1,2,\ldots,N). In other words, a sequence A of length N is a permutation of (1,2,\ldots,N) if and only if each i\ (1\leq i\leq N) occurs in A exactly once.

Constraints

  • 2N2×1052 \leq N \leq 2\times10^5
  • 1PiN (1iN)1 \leq P _ i \leq N\ (1\leq i\leq N)
  • ij    PiPji\neq j\implies P _ i\neq P _ j
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN

P1P _ 1 P2P _ 2 \ldots PNP _ N

Output

Print Di (1iN)D _ i\ (1\leq i\leq N) in ascending order of ii, separated by spaces.

4
3 2 4 1
2 2 3 3

For example, for i=1i=1,

  • if j=2j=2, we have PiPj=1\left\lvert P _ i-P _ j\right\rvert=1 and ij=1\left\lvert i-j\right\rvert=1;
  • if j=3j=3, we have PiPj=1\left\lvert P _ i-P _ j\right\rvert=1 and ij=2\left\lvert i-j\right\rvert=2;
  • if j=4j=4, we have PiPj=2\left\lvert P _ i-P _ j\right\rvert=2 and ij=3\left\lvert i-j\right\rvert=3.

Thus, the value is minimum when j=2j=2, where $\left\lvert P _ i-P _ j\right\rvert+\left\lvert i-j\right\rvert=2$, so D1=2D _ 1=2.

7
1 2 3 4 5 6 7
2 2 2 2 2 2 2
16
12 10 7 14 8 3 11 13 2 5 6 16 4 1 15 9
3 3 3 5 3 4 3 3 4 2 2 4 4 4 4 7