atcoder#ABC265F. [ABC265F] Manhattan Cafe

[ABC265F] Manhattan Cafe

Score : 500500 points

Problem Statement

In an NN-dimensional space, the Manhattan distance d(x,y)d(x,y) between two points x=(x1,x2,,xN)x=(x_1, x_2, \dots, x_N) and y=(y1,y2,,yN)y = (y_1, y_2, \dots, y_N) is defined by:

$$\displaystyle d(x,y)=\sum_{i=1}^n \vert x_i - y_i \vert. $$

A point x=(x1,x2,,xN)x=(x_1, x_2, \dots, x_N) is said to be a lattice point if the components x1,x2,,xNx_1, x_2, \dots, x_N are all integers.

You are given lattice points p=(p1,p2,,pN)p=(p_1, p_2, \dots, p_N) and q=(q1,q2,,qN)q = (q_1, q_2, \dots, q_N) in an NN-dimensional space. How many lattice points rr satisfy d(p,r)Dd(p,r) \leq D and d(q,r)Dd(q,r) \leq D? Find the count modulo 998244353998244353.

Constraints

  • 1N1001 \leq N \leq 100
  • 0D10000 \leq D \leq 1000
  • 1000pi,qi1000-1000 \leq p_i, q_i \leq 1000
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN DD

p1p_1 p2p_2 \dots pNp_N

q1q_1 q2q_2 \dots qNq_N

Output

Print the answer.

1 5
0
3
8

When N=1N=1, we consider points in a one-dimensional space, that is, on a number line. 88 lattice points satisfy the conditions: 2,1,0,1,2,3,4,5-2,-1,0,1,2,3,4,5.

3 10
2 6 5
2 1 2
632
10 100
3 1 4 1 5 9 2 6 5 3
2 7 1 8 2 8 1 8 2 8
145428186