atcoder#ABC260E. [ABC260E] At Least One

[ABC260E] At Least One

Score : 500500 points

Problem Statement

You are given an integer MM and NN pairs of integers (A1,B1),(A2,B2),,(AN,BN)(A_1, B_1), (A_2, B_2), \dots, (A_N, B_N). For all ii, it holds that 1Ai<BiM1 \leq A_i \lt B_i \leq M.

A sequence SS is said to be a good sequence if the following conditions are satisfied:

  • SS is a contiguous subsequence of the sequence (1,2,3,...,M)(1,2,3,..., M).
  • For all ii, SS contains at least one of AiA_i and BiB_i.

Let f(k)f(k) be the number of possible good sequences of length kk. Enumerate f(1),f(2),,f(M)f(1), f(2), \dots, f(M).

Constraints

  • 1N2×1051 \leq N \leq 2 \times 10^5
  • 2M2×1052 \leq M \leq 2 \times 10^5
  • 1Ai<BiM1 \leq A_i \lt B_i \leq M
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

A1A_1 B1B_1

A2A_2 B2B_2

\vdots

ANA_N BNB_N

Output

Print the answers in the following format:

f(1)f(1) f(2)f(2) \dots f(M)f(M)

3 5
1 3
1 4
2 5
0 1 3 2 1

Here is the list of all possible good sequences.

  • (1,2)(1,2)
  • (1,2,3)(1,2,3)
  • (2,3,4)(2,3,4)
  • (3,4,5)(3,4,5)
  • (1,2,3,4)(1,2,3,4)
  • (2,3,4,5)(2,3,4,5)
  • (1,2,3,4,5)(1,2,3,4,5)
1 2
1 2
2 1
5 9
1 5
1 7
5 6
5 8
2 6
0 0 1 2 4 4 3 2 1