100 atcoder#ABC215B. [ABC215B] log2(N)

[ABC215B] log2(N)

Score : 200200 points

Problem Statement

Given a positive integer NN, find the maximum integer kk such that 2kN2^k \le N.

Constraints

  • NN is an integer satisfying 1N10181 \le N \le 10^{18}.

Input

Input is given from Standard Input in the following format:

NN

Output

Print the answer as an integer.

6
2
  • k=2k=2 satisfies 22=462^2=4 \le 6.
  • For every integer kk such that k3k \ge 3, 2k>62^k > 6 holds.

Therefore, the answer is k=2k=2.

1
0

Note that 20=12^0=1.

1000000000000000000
59

The input value may not fit into a 3232-bit integer.