100 atcoder#ABC205C. [ABC205C] POW

[ABC205C] POW

Score : 300300 points

Problem Statement

For a base number XX, the product of multiplying it YY times is called X to the Y-th power and represented as pow(X,Y)\text{pow}(X, Y). For example, we have pow(2,3)=2×2×2=8\text{pow}(2,3)=2\times 2\times 2=8.

Given three integers AA, BB, and CC, compare pow(A,C)\text{pow}(A,C) and pow(B,C)\text{pow}(B,C) to determine which is greater.

Constraints

  • 109A,B109-10^9 \leq A,B \leq 10^9
  • 1C1091 \leq C \leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

AA BB CC

Output

If pow(A,C)<pow(B,C)\text{pow}(A,C)< \text{pow}(B,C), print <; if pow(A,C)>pow(B,C)\text{pow}(A,C)>\text{pow}(B,C), print >; if pow(A,C)=pow(B,C)\text{pow}(A,C)=\text{pow}(B,C), print =.

3 2 4
>

We have pow(3,4)=81\text{pow}(3,4)=81 and pow(2,4)=16\text{pow}(2,4)=16.

-7 7 2
=

We have pow(7,2)=49\text{pow}(-7,2)=49 and pow(7,2)=49\text{pow}(7,2)=49.

-8 6 3
<

We have pow(8,3)=512\text{pow}(-8,3)=-512 and pow(6,3)=216\text{pow}(6,3)=216.