atcoder#ABC194E. [ABC194E] Mex Min

[ABC194E] Mex Min

Score : 500500 points

Problem Statement

Let us define mex(x1,x2,x3,,xk)\mathrm{mex}(x_1, x_2, x_3, \dots, x_k) as the smallest non-negative integer that does not occur in x1,x2,x3,,xkx_1, x_2, x_3, \dots, x_k. You are given an integer sequence of length NN: A=(A1,A2,A3,,AN)A = (A_1, A_2, A_3, \dots, A_N). For each integer ii such that 0iNM0 \le i \le N - M, we compute $\mathrm{mex}(A_{i + 1}, A_{i + 2}, A_{i + 3}, \dots, A_{i + M})$. Find the minimum among the results of these NM+1N - M + 1 computations.

Constraints

  • 1MN1.5×1061 \le M \le N \le 1.5 \times 10^6
  • 0Ai<N0 \le A_i \lt N
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

A1A_1 A2A_2 A3A_3 \dots ANA_N

Output

Print the answer.

3 2
0 0 1
1

We have:

  • for i=0i = 0: $\mathrm{mex}(A_{i + 1}, A_{i + 2}) = \mathrm{mex}(0, 0) = 1$
  • for i=1i = 1: $\mathrm{mex}(A_{i + 1}, A_{i + 2}) = \mathrm{mex}(0, 1) = 2$

Thus, the answer is the minimum among 11 and 22, which is 11.

3 2
1 1 1
0

We have:

  • for i=0i = 0: $\mathrm{mex}(A_{i + 1}, A_{i + 2}) = \mathrm{mex}(1, 1) = 0$
  • for i=1i = 1: $\mathrm{mex}(A_{i + 1}, A_{i + 2}) = \mathrm{mex}(1, 1) = 0$
3 2
0 1 0
2

We have:

  • for i=0i = 0: $\mathrm{mex}(A_{i + 1}, A_{i + 2}) = \mathrm{mex}(0, 1) = 2$
  • for i=1i = 1: $\mathrm{mex}(A_{i + 1}, A_{i + 2}) = \mathrm{mex}(1, 0) = 2$
7 3
0 0 1 2 0 1 0
2