100 atcoder#ABC181C. [ABC181C] Collinearity

[ABC181C] Collinearity

Score : 300300 points

Problem Statement

We have NN points on a two-dimensional infinite coordinate plane.

The ii-th point is at (xi,yi)(x_i,y_i).

Is there a triple of distinct points lying on the same line among the NN points?

Constraints

  • All values in input are integers.
  • 3N1023 \leq N \leq 10^2
  • xi,yi103|x_i|, |y_i| \leq 10^3
  • If iji \neq j, (xi,yi)(xj,yj)(x_i, y_i) \neq (x_j, y_j).

Input

Input is given from Standard Input in the following format:

NN

x1x_1 y1y_1

\vdots

xNx_N yNy_N

Output

If there is a triple of distinct points lying on the same line, print Yes; otherwise, print No.

4
0 1
0 2
0 3
1 1
Yes

The three points (0,1),(0,2),(0,3)(0, 1), (0, 2), (0, 3) lie on the line x=0x = 0.

14
5 5
0 1
2 5
8 0
2 1
0 0
3 6
8 6
5 9
7 9
3 4
9 2
9 8
7 2
No
9
8 2
2 3
1 3
3 7
1 0
8 8
5 6
9 7
0 1
Yes