100 atcoder#ABC177E. [ABC177E] Coprime

[ABC177E] Coprime

Score : 500500 points

Problem Statement

We have NN integers. The ii-th number is AiA_i.

{Ai}\{A_i\} is said to be pairwise coprime when GCD(Ai,Aj)=1GCD(A_i,A_j)=1 holds for every pair (i,j)(i, j) such that 1i<jN1\leq i < j \leq N.

{Ai}\{A_i\} is said to be setwise coprime when {Ai}\{A_i\} is not pairwise coprime but GCD(A1,,AN)=1GCD(A_1,\ldots,A_N)=1.

Determine if {Ai}\{A_i\} is pairwise coprime, setwise coprime, or neither.

Here, GCD()GCD(\ldots) denotes greatest common divisor.

Constraints

  • 2N1062 \leq N \leq 10^6
  • 1Ai1061 \leq A_i\leq 10^6

Input

Input is given from Standard Input in the following format:

NN

A1A_1 \ldots ANA_N

Output

If {Ai}\{A_i\} is pairwise coprime, print pairwise coprime; if {Ai}\{A_i\} is setwise coprime, print setwise coprime; if neither, print not coprime.

3
3 4 5
pairwise coprime

GCD(3,4)=GCD(3,5)=GCD(4,5)=1GCD(3,4)=GCD(3,5)=GCD(4,5)=1, so they are pairwise coprime.

3
6 10 15
setwise coprime

Since GCD(6,10)=2GCD(6,10)=2, they are not pairwise coprime. However, since GCD(6,10,15)=1GCD(6,10,15)=1, they are setwise coprime.

3
6 10 16
not coprime

GCD(6,10,16)=2GCD(6,10,16)=2, so they are neither pairwise coprime nor setwise coprime.