Score : 600 points
Problem Statement
Given are a sequence of N positive integers A1, A2, …, AN and another positive integer S.
For a non-empty subset T of the set {1,2,…,N}, let us define f(T) as follows:
- f(T) is the number of different non-empty subsets {x1,x2,…,xk} of T such that Ax1+Ax2+⋯+Axk=S.
Find the sum of f(T) over all 2N−1 subsets T of {1,2,…,N}. Since the sum can be enormous, print it modulo 998244353.
Constraints
- All values in input are integers.
- 1≤N≤3000
- 1≤S≤3000
- 1≤Ai≤3000
Input is given from Standard Input in the following format:
N S
A1 A2 ... AN
Output
Print the sum of f(T) modulo 998244353.
3 4
2 2 4
6
For each T, the value of f(T) is shown below. The sum of these values is 6.
- f({1})=0
- f({2})=0
- f({3})=1 (One subset {3} satisfies the condition.)
- f({1,2})=1 ({1,2})
- f({2,3})=1 ({3})
- f({1,3})=1 ({3})
- f({1,2,3})=2 ({1,2},{3})
5 8
9 9 9 9 9
0
10 10
3 1 4 1 5 9 2 6 5 3
3296