100 atcoder#ABC165D. [ABC165D] Floor Function

[ABC165D] Floor Function

Score : 400400 points

Problem Statement

Given are integers AA, BB, and NN.

Find the maximum possible value of floor(Ax/B)A×floor(x/B)floor(Ax/B) - A \times floor(x/B) for a non-negative integer xx not greater than NN.

Here floor(t)floor(t) denotes the greatest integer not greater than the real number tt.

Constraints

  • 1A1061 \leq A \leq 10^{6}
  • 1B10121 \leq B \leq 10^{12}
  • 1N10121 \leq N \leq 10^{12}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

AA BB NN

Output

Print the maximum possible value of floor(Ax/B)A×floor(x/B)floor(Ax/B) - A \times floor(x/B) for a non-negative integer xx not greater than NN, as an integer.

5 7 4
2

When x=3x=3, $floor(Ax/B)-A \times floor(x/B) = floor(15/7) - 5 \times floor(3/7) = 2$. This is the maximum value possible.

11 10 9
9