atcoder#ABC159F. [ABC159F] Knapsack for All Segments

[ABC159F] Knapsack for All Segments

Score : 600600 points

Problem Statement

Given are a sequence of NN integers A1A_1, A2A_2, \ldots, ANA_N and a positive integer SS. For a pair of integers (L,R)(L, R) such that 1LRN1\leq L \leq R \leq N, let us define f(L,R)f(L, R) as follows:

  • f(L,R)f(L, R) is the number of sequences of integers (x1,x2,,xk)(x_1, x_2, \ldots , x_k) such that Lx1<x2<<xkRL \leq x_1 < x_2 < \cdots < x_k \leq R and Ax1+Ax2++Axk=SA_{x_1}+A_{x_2}+\cdots +A_{x_k} = S.

Find the sum of f(L,R)f(L, R) over all pairs of integers (L,R)(L, R) such that 1LRN1\leq L \leq R\leq N. Since this sum can be enormous, print it modulo 998244353998244353.

Constraints

  • All values in input are integers.
  • 1N30001 \leq N \leq 3000
  • 1S30001 \leq S \leq 3000
  • 1Ai30001 \leq A_i \leq 3000

Input

Input is given from Standard Input in the following format:

NN SS

A1A_1 A2A_2 ...... ANA_N

Output

Print the sum of f(L,R)f(L, R), modulo 998244353998244353.

3 4
2 2 4
5

The value of f(L,R)f(L, R) for each pair is as follows, for a total of 55.

  • f(1,1)=0f(1,1) = 0
  • f(1,2)=1f(1,2) = 1 (for the sequence (1,2)(1, 2))
  • f(1,3)=2f(1,3) = 2 (for (1,2)(1, 2) and (3)(3))
  • f(2,2)=0f(2,2) = 0
  • f(2,3)=1f(2,3) = 1 (for (3)(3))
  • f(3,3)=1f(3,3) = 1 (for (3)(3))
5 8
9 9 9 9 9
0
10 10
3 1 4 1 5 9 2 6 5 3
152