0 atcoder#ABC140E. [ABC140E] Second Sum

[ABC140E] Second Sum

Score: 500500 points

Problem Statement

Given is a permutation PP of {1,2,,N}\{1, 2, \ldots, N\}.

For a pair (L,R)(1L<RN)(L, R) (1 \le L \lt R \le N), let XL,RX_{L, R} be the second largest value among PL,PL+1,,PRP_L, P_{L+1}, \ldots, P_R.

Find $\displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} X_{L,R}$.

Constraints

  • 2N1052 \le N \le 10^5
  • 1PiN1 \le P_i \le N
  • PiPjP_i \neq P_j (ij)(i \neq j)
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

P1P_1 P2P_2 \ldots PNP_N

Output

Print $\displaystyle \sum_{L=1}^{N-1} \sum_{R=L+1}^{N} X_{L,R}$.

3
2 3 1
5

X1,2=2,X1,3=2X_{1, 2} = 2, X_{1, 3} = 2, and X2,3=1X_{2, 3} = 1, so the sum is 2+2+1=52 + 2 + 1 = 5.

5
1 2 3 4 5
30
8
8 2 7 3 4 5 6 1
136