27 条题解
-
4
知识点:快速幂
递归公式(分治思想):
$x^y=(x^{\lfloor\frac{y}{2}\rfloor})^2\cdot x^{y-2\cdot{\lfloor\frac{y}{2}\rfloor}}$,而终止条件为 ,此时 。
即:
$x^y=\begin{cases} (x^{\frac{y}{2}})^2\qquad(2\mid y)\\ (x^{\frac{y-1}{2}})^2\cdot x(2\nmid y)\\ 1\qquad\qquad(y=0) \end{cases}$
代码如下:
int qpow(int a,int b){//即a^b if(b==0) return 1;//终止条件 else if(b%2==0){ int k=qpow(a,b/2); return k*k%MOD; } else{ int k=qpow(a,b/2); return k*k%MOD*a%MOD; } //分治思想 }
我曾经写过一个
及其精彩的错误代码:int qpow(int a,int b){//即a^b if(b==0) return 1;//终止条件 else if(b%2==0){ return qpow(a,b/2)*qpow(a,b/2)%MOD; } else{ return qpow(a,b/2)*qpow(a,b/2)%MOD*a%MOD; } //分治思想 }
本代码有什么问题?(
设问的修辞手法)答:这里。
return qpow(a,b/2)*qpow(a,b/2)%MOD;
以及:
return qpow(a,b/2)*qpow(a,b/2)%MOD*a%MOD;
这里相当于计算了两次
qpow(a,b/2)
。所以需要乘 次 。
那么此“快速”幂的复杂度为 。
真正的快速幂的复杂度约为
用上面的那个即可通关。
信息
- ID
- 171
- 时间
- 1000ms
- 内存
- 256MiB
- 难度
- 2
- 标签
- 递交数
- 1203
- 已通过
- 384
- 上传者