#P3209. From Pythagoras to …

From Pythagoras to …

Description

There was a footpath, leading across fields to New Southgate, and I used to go there alone to watch the sunset and contemplate suicide. I did not, however, commit suicide, because I wished to know more of mathematics.

— Bertrand Russell

Mathematics is beautiful, isn’t it? Well, I’m sure you all know the famous Pythagorean theorem. He found an amazing fact about triangles, that is if the triangle has a right angle, the following relation holds:

a2 + b2 = c2, where c is the length of the hypotenuse.

However, Pythagoras told us nothing more about the generalization below:

x2 + y2 = n, where n is an integer.

It is a natural tendency for mathematicians to solve whether an equation has integer solutions or not. But for you, a future computer scientist, will you also try to do some of the mathematicians’ work?

To simplify this problem, you are only required to find out whether the above equation x2 + y2 = n has integer solutions.

Input

The first line of the input is an integer T (T ≤ 50), and the following T lines have an integer n each. It is guaranteed that each n fits in signed 64-bit integer type.

Output

For each test case output “YES” or “NO” indicating that the equation has or doesn’t have integer solutions, respectively.

1
0
YES

Source

POJ Monthly--2007.03.04

, Ikki