#P22400. Purple Crayon
Purple Crayon
题目链接
题意
已知一棵 个节点的树,有红蓝两方需要对其操作。
红方先动,选择若干棵子树,将它们的每个节点都染成红色,但要保证染红的节点数不超过 。
然后蓝方动,选择若干棵子树,将它们的每个节点都染成蓝色,但不能存在一个点染红后又染蓝。可以染的节点数无限。
设 分别表示操作完后树上没有颜色的、红色的、蓝色的点的数量,那么最后的得分是 。
红方想让得分尽量大,蓝方想让得分尽量小。
求最后得分。
输入格式
The first line contains two integers $n$ and $k$ ($2 \le n \le 2 \cdot 10^5$; $1 \le k \le n$) — the number of vertices in the tree and the maximum number of red nodes.
Next $n - 1$ lines contains description of edges. The $i$-th line contains two space separated integers $u_i$ and $v_i$ ($1 \le u_i, v_i \le n$; $u_i \neq v_i$) — the $i$-th edge of the tree.
It's guaranteed that given edges form a tree.
Output
Print one integer — the resulting score if both Red and Blue play optimally.
Samples
4 2
1 2
1 3
1 4
1
5 2
1 2
2 3
3 4
4 5
6
7 2
1 2
1 3
4 2
3 5
6 3
6 7
4
4 1
1 2
1 3
1 4
-1
Note
In the first test case, the optimal strategy is as follows:
- Red chooses to color the subtrees of nodes $2$ and $3$.
- Blue chooses to color the subtree of node $4$.
In the second test case, the optimal strategy is as follows:
- Red chooses to color the subtree of node $4$. This colors both nodes $4$ and $5$.
- Blue does not have any options, so nothing is colored blue.
For the third test case:
The score of the game is $4 \cdot (2 - 1) = 4$.