# #P1560F1. Nearest Beautiful Number (easy version)

ID: 7238 Type: RemoteJudge 1000ms 256MiB 尝试: 2 已通过: 2 难度: 10 上传者: 标签>bitmasksbrute forceconstructive algorithmsdfs and similargreedyimplementation

# Nearest Beautiful Number (easy version)

## Description

It is a simplified version of problem F2. The difference between them is the constraints (F1: \$k \le 2\$, F2: \$k \le 10\$).

You are given an integer \$n\$. Find the minimum integer \$x\$ such that \$x \ge n\$ and the number \$x\$ is \$k\$-beautiful.

A number is called \$k\$-beautiful if its decimal representation having no leading zeroes contains no more than \$k\$ different digits. E.g. if \$k = 2\$, the numbers \$3434443\$, \$55550\$, \$777\$ and \$21\$ are \$k\$-beautiful whereas the numbers \$120\$, \$445435\$ and \$998244353\$ are not.

The first line contains one integer \$t\$ (\$1 \le t \le 10^4\$) — the number of test cases. Then \$t\$ test cases follow.

Each test case consists of one line containing two integers \$n\$ and \$k\$ (\$1 \le n \le 10^9\$, \$1 \le k \le 2\$).

For each test case output on a separate line \$x\$ — the minimum \$k\$-beautiful integer such that \$x \ge n\$.

## Input

The first line contains one integer \$t\$ (\$1 \le t \le 10^4\$) — the number of test cases. Then \$t\$ test cases follow.

Each test case consists of one line containing two integers \$n\$ and \$k\$ (\$1 \le n \le 10^9\$, \$1 \le k \le 2\$).

## Output

For each test case output on a separate line \$x\$ — the minimum \$k\$-beautiful integer such that \$x \ge n\$.

## Samples

``````4
1 1
221 2
177890 2
998244353 1
``````
``````1
221
181111
999999999
``````