#P1386. 座位安排

座位安排

题目描述

nn 个人安排座位,先给每个人一个 1n1\sim n 的编号,设第i个人的编号为 aia_i(不同人的编号可以相同),接着从第一个人开始,大家依次入座。

ii 个人来了以后尝试坐到 aia_i,如果 aia_i 被占据了,就尝试 ai+1a_{i+1}ai+1a_{i+1} 也被占据了的话就尝试 ai+2a_{i+2},……,如果一直尝试到第 nn 个都不行,该安排方案就不合法。

然而有 mm 个人的编号已经确定(他们或许贿赂了你的上司…),你只能安排剩下的人的编号。求有多少种合法的安排方案。由于答案可能很大,只需输出其除以 MM 后的余数即可。

输入格式

第一行一个整数 TT,表示数据组数;

对于每组数据,第一行有三个整数,分别表示 n,m,Mn,m,M

mm 不为 00,则接下来一行有 mm 对整数,p1,q1,p2,q2,,pm,qmp_1,q_1,p_2,q_2,\cdots,p_m,q_m,其中第 ii 对整数 pi,qip_i,q_i 表示第 pip_i 个人的编号必须为 qiq_i

输出格式

对于每组数据输出一行,若是有解则输出 YES,后跟一个整数表示方案数 modM\bmod M,注意,YES 和数之间只有一个空格;否则输出 NO

2
4 3 10
1 2 2 1 3 1
10 3 8882
7 9 2 9 5 10

YES 4
NO

提示

对于 30%30\% 的数据 1n101\le n\le 101M327671\le M\le 32767

对于 100%100\% 的数据 1T101≤T≤101n3001≤n≤3000mn0≤m≤n2M1092≤M≤10^91pi,qin1≤p_i,q_i≤n 且保证 pip_i 互不相同。