#16. Mod i

Mod i

Problem Statement

Given is a sequence AA of NN numbers. Find the number of ways to separate AA into some number of non-empty contiguous subsequence B1,B2,,BkB_1,B_2,…,B_k so that the following condition is satisfied:

  • For every ii ( 1ik)1≤i≤k) , the sum of elements in BiB_i is divisible by ii .

Since the count can be enormous, print it modulo (109+7) (10^9+7) .

Input

Input is given from Standard Input in the following format:

NN

A1A_1 A2A_2 .… ANA_N

Output

Print the number of ways to separate the sequence so that the condition in the Problem Statement is satisfied, modulo (109+7)(10^9+7)


Sample Input 1

4
1 2 3 4

Sample Output 1

3

We have three ways to separate the sequence, as follows:

  • (1),(2),(3),(4)(1),(2),(3),(4)
  • (1,2,3),(4)(1,2,3),(4)
  • (1,2,3,4)(1,2,3,4)

Sample Input 2

5
8 6 3 3 3

Sample Output 2

5

Sample Input 3

10
791754273866483 706434917156797 714489398264550 918142301070506 559125109706263 694445720452148 648739025948445 869006293795825 718343486637033 934236559762733

Sample Output 3

15

The values in input may not fit into a 32bit32-bit integer type.

Constraints

  • 1N30001≤N≤3000
  • 1Ai10151≤A_i≤10^{15}
  • For 5% test cases, n10n \le 10.
  • For 20% test cases, n500n \le 500.
  • For 50% test cases, n800n \le 800.
  • For 100% test cases, n3000n \le 3000.
  • All values in input are integers.