#2246. The Clocks
The Clocks
Consider nine clocks arranged in a 3x3 array thusly:
|-------| |-------| |-------|
| | | | | | |
|---O | |---O | | O |
| | | | | |
|-------| |-------| |-------|
A B C
|-------| |-------| |-------|
| | | | | |
| O | | O | | O |
| | | | | | | | |
|-------| |-------| |-------|
D E F
|-------| |-------| |-------|
| | | | | |
| O | | O---| | O |
| | | | | | | |
|-------| |-------| |-------|
G H I
The goal is to find a minimal sequence of moves to return all the dials to 12 o'clock. Nine different ways to turn the dials on the clocks are supplied via a table below; each way is called a move. Select for each move a number 1 through 9 which will cause the dials of the affected clocks (see next table) to be turned 90 degrees clockwise.
Move | Affected clocks |
---|---|
1 | ABDE |
2 | ABC |
3 | BCEF |
4 | ADG |
5 | BDEFH |
6 | CFI |
7 | DEGH |
8 | GHI |
9 | EFHI |
Example
Each number represents a time accoring to following table:
9 9 12 9 12 12 9 12 12 12 12 12 12 12 12
6 6 6 5 -> 9 9 9 8-> 9 9 9 4 -> 12 9 9 9-> 12 12 12
6 3 6 6 6 6 9 9 9 12 9 9 12 12 12
But this might or might not be the correct
answer; see below.
INPUT FORMAT
Lines 1-3: Three lines of three space-separated numbers; each number represents the start time of one clock, 3, 6, 9, or 12. The ordering of the numbers corresponds to the first example above.
SAMPLE INPUT
9 9 12
6 6 6
6 3 6
OUTPUT FORMAT
A single line that contains a space separated list of the shortest sequence of moves (designated by numbers) which returns all the clocks to 12:00. If there is more than one solution, print the one which gives the lowest number when the moves are concatenated (e.g., 5 2 4 6 < 9 3 1 1).
SAMPLE OUTPUT
4 5 8 9